Filtered by CWE-208
Total 91 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-20067 2025-08-12 6 Medium
Observable timing discrepancy in firmware for some Intel(R) CSME and Intel(R) SPS may allow a privileged user to potentially enable information disclosure via local access.
CVE-2025-8774 1 Boom-core 1 Risvc-boom 2025-08-12 2.5 Low
A vulnerability has been found in riscv-boom SonicBOOM up to 2.2.3 and classified as problematic. Affected by this vulnerability is an unknown functionality of the component L1 Data Cache Handler. The manipulation leads to observable timing discrepancy. Local access is required to approach this attack. The complexity of an attack is rather high. The exploitation appears to be difficult. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2021-42016 1 Siemens 54 Ruggedcom I800, Ruggedcom I801, Ruggedcom I802 and 51 more 2025-08-12 7.5 High
A vulnerability has been identified in RUGGEDCOM i800, RUGGEDCOM i801, RUGGEDCOM i802, RUGGEDCOM i803, RUGGEDCOM M2100, RUGGEDCOM M2100F, RUGGEDCOM M2200, RUGGEDCOM M2200F, RUGGEDCOM M969, RUGGEDCOM M969F, RUGGEDCOM RMC30, RUGGEDCOM RMC8388 V4.X, RUGGEDCOM RMC8388 V5.X, RUGGEDCOM RP110, RUGGEDCOM RS1600, RUGGEDCOM RS1600F, RUGGEDCOM RS1600T, RUGGEDCOM RS400, RUGGEDCOM RS400F, RUGGEDCOM RS401, RUGGEDCOM RS416, RUGGEDCOM RS416F, RUGGEDCOM RS416P, RUGGEDCOM RS416PF, RUGGEDCOM RS416Pv2 V4.X, RUGGEDCOM RS416Pv2 V5.X, RUGGEDCOM RS416v2 V4.X, RUGGEDCOM RS416v2 V5.X, RUGGEDCOM RS8000, RUGGEDCOM RS8000A, RUGGEDCOM RS8000H, RUGGEDCOM RS8000T, RUGGEDCOM RS900, RUGGEDCOM RS900 (32M) V4.X, RUGGEDCOM RS900 (32M) V5.X, RUGGEDCOM RS900F, RUGGEDCOM RS900G, RUGGEDCOM RS900G (32M) V4.X, RUGGEDCOM RS900G (32M) V5.X, RUGGEDCOM RS900GF, RUGGEDCOM RS900GP, RUGGEDCOM RS900GPF, RUGGEDCOM RS900L, RUGGEDCOM RS900M-GETS-C01, RUGGEDCOM RS900M-GETS-XX, RUGGEDCOM RS900M-STND-C01, RUGGEDCOM RS900M-STND-XX, RUGGEDCOM RS900W, RUGGEDCOM RS910, RUGGEDCOM RS910L, RUGGEDCOM RS910W, RUGGEDCOM RS920L, RUGGEDCOM RS920W, RUGGEDCOM RS930L, RUGGEDCOM RS930W, RUGGEDCOM RS940G, RUGGEDCOM RS940GF, RUGGEDCOM RS969, RUGGEDCOM RSG2100, RUGGEDCOM RSG2100 (32M) V4.X, RUGGEDCOM RSG2100 (32M) V5.X, RUGGEDCOM RSG2100F, RUGGEDCOM RSG2100P, RUGGEDCOM RSG2100P (32M) V4.X, RUGGEDCOM RSG2100P (32M) V5.X, RUGGEDCOM RSG2100PF, RUGGEDCOM RSG2200, RUGGEDCOM RSG2200F, RUGGEDCOM RSG2288 V4.X, RUGGEDCOM RSG2288 V5.X, RUGGEDCOM RSG2300 V4.X, RUGGEDCOM RSG2300 V5.X, RUGGEDCOM RSG2300F, RUGGEDCOM RSG2300P V4.X, RUGGEDCOM RSG2300P V5.X, RUGGEDCOM RSG2300PF, RUGGEDCOM RSG2488 V4.X, RUGGEDCOM RSG2488 V5.X, RUGGEDCOM RSG2488F, RUGGEDCOM RSG907R, RUGGEDCOM RSG908C, RUGGEDCOM RSG909R, RUGGEDCOM RSG910C, RUGGEDCOM RSG920P V4.X, RUGGEDCOM RSG920P V5.X, RUGGEDCOM RSL910, RUGGEDCOM RST2228, RUGGEDCOM RST2228P, RUGGEDCOM RST916C, RUGGEDCOM RST916P. A timing attack, in a third-party component, could make the retrieval of the private key possible, used for encryption of sensitive data. If a threat actor were to exploit this, the data integrity and security could be compromised.
CVE-2024-2467 1 Redhat 2 Enterprise Linux, Openssl 2025-08-06 5.9 Medium
A timing-based side-channel flaw exists in the perl-Crypt-OpenSSL-RSA package, which could be sufficient to recover plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode.
CVE-2024-2236 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-08-03 5.9 Medium
A timing-based side-channel flaw was found in libgcrypt's RSA implementation. This issue may allow a remote attacker to initiate a Bleichenbacher-style attack, which can lead to the decryption of RSA ciphertexts.
CVE-2023-50782 3 Couchbase, Cryptography.io, Redhat 7 Couchbase Server, Cryptography, Ansible Automation Platform and 4 more 2025-08-03 7.5 High
A flaw was found in the python-cryptography package. This issue may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data.
CVE-2024-3296 1 Redhat 1 Enterprise Linux 2025-08-03 5.9 Medium
A timing-based side-channel flaw exists in the rust-openssl package, which could be sufficient to recover a plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages for decryption. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode.
CVE-2024-24770 1 Vantage6 1 Vantage6 2025-07-30 5.3 Medium
vantage6 is an open source framework built to enable, manage and deploy privacy enhancing technologies like Federated Learning and Multi-Party Computation. Much like GHSA-45gq-q4xh-cp53, it is possible to find which usernames exist in vantage6 by calling the API routes `/recover/lost` and `/2fa/lost`. These routes send emails to users if they have lost their password or MFA token. This issue has been addressed in commit `aecfd6d0e` and is expected to ship in subsequent releases. Users are advised to upgrade as soon as a new release is available. There are no known workarounds for this vulnerability.
CVE-2024-22340 2 Ibm, Linux 5 4769, Aix, Common Cryptographic Architecture and 2 more 2025-07-25 6.5 Medium
IBM Common Cryptographic Architecture 7.0.0 through 7.5.51 could allow a remote attacker to obtain sensitive information during the creation of ECDSA signatures to perform a timing-based attack.
CVE-2025-53940 2025-07-25 N/A
Quiet is an alternative to team chat apps like Slack, Discord, and Element that does not require trusting a central server or running one's own. In versions 6.1.0-alpha.4 and below, Quiet's API for backend/frontend communication was using an insecure, not constant-time comparison function for token verification. This allowed for a potential timing attack where an attacker would try different token values and observe tiny differences in the response time (wrong characters fail faster) to guess the whole token one character at a time. This is fixed in version 6.0.1.
CVE-2024-23953 1 Apache 1 Hive 2025-07-15 6.5 Medium
Use of Arrays.equals() in LlapSignerImpl in Apache Hive to compare message signatures allows attacker to forge a valid signature for an arbitrary message byte by byte. The attacker should be an authorized user of the product to perform this attack. Users are recommended to upgrade to version 4.0.0, which fixes this issue. The problem occurs when an application doesn’t use a constant-time algorithm for validating a signature. The method Arrays.equals() returns false right away when it sees that one of the input’s bytes are different. It means that the comparison time depends on the contents of the arrays. This little thing may allow an attacker to forge a valid signature for an arbitrary message byte by byte. So it might allow malicious users to submit splits/work with selected signatures to LLAP without running as a privileged user, potentially leading to DDoS attack. More details in the reference section.
CVE-2024-29995 1 Microsoft 12 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 9 more 2025-07-10 8.1 High
Windows Kerberos Elevation of Privilege Vulnerability
CVE-2024-54772 1 Mikrotik 1 Routeros 2025-06-30 5.4 Medium
An issue was discovered in the Winbox service of MikroTik RouterOS long-term release v6.43.13 through v6.49.13 and stable v6.43 through v7.17.2. A patch is available in the stable release v6.49.18. A discrepancy in response size between connection attempts made with a valid username and those with an invalid username allows attackers to enumerate for valid accounts.
CVE-2023-41313 1 Apache 1 Doris 2025-06-30 9.8 Critical
The authentication method in Apache Doris versions before 2.0.0 was vulnerable to timing attacks. Users are recommended to upgrade to version 2.0.0 + or 1.2.8, which fixes this issue.
CVE-2025-46570 2 Vllm, Vllm-project 2 Vllm, Vllm 2025-06-24 2.6 Low
vLLM is an inference and serving engine for large language models (LLMs). Prior to version 0.9.0, when a new prompt is processed, if the PageAttention mechanism finds a matching prefix chunk, the prefill process speeds up, which is reflected in the TTFT (Time to First Token). These timing differences caused by matching chunks are significant enough to be recognized and exploited. This issue has been patched in version 0.9.0.
CVE-2024-56738 1 Gnu 1 Grub2 2025-06-24 5.3 Medium
GNU GRUB (aka GRUB2) through 2.12 does not use a constant-time algorithm for grub_crypto_memcmp and thus allows side-channel attacks.
CVE-2024-45191 1 Matrix 1 Olm 2025-06-17 5.3 Medium
An issue was discovered in Matrix libolm through 3.2.16. The AES implementation is vulnerable to cache-timing attacks due to use of S-boxes. This is related to software that uses a lookup table for the SubWord step. This refers to the libolm implementation of Olm. NOTE: This vulnerability only affects products that are no longer supported by the maintainer.
CVE-2024-39329 2 Djangoproject, Redhat 5 Django, Ansible Automation Platform, Openstack and 2 more 2025-06-16 5.3 Medium
An issue was discovered in Django 5.0 before 5.0.7 and 4.2 before 4.2.14. The django.contrib.auth.backends.ModelBackend.authenticate() method allows remote attackers to enumerate users via a timing attack involving login requests for users with an unusable password.
CVE-2023-5388 3 Debian, Mozilla, Redhat 8 Debian Linux, Firefox, Thunderbird and 5 more 2025-06-09 6.5 Medium
NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9.
CVE-2025-48995 2025-06-02 N/A
SignXML is an implementation of the W3C XML Signature standard in Python. When verifying signatures with X509 certificate validation turned off and HMAC shared secret set (`signxml.XMLVerifier.verify(require_x509=False, hmac_key=...`), versions of SignXML prior to 4.0.4 are vulnerable to a potential timing attack. The verifier may leak information about the correct HMAC when comparing it with the user supplied hash, allowing users to reconstruct the correct HMAC for any data.