Filtered by vendor Nodejs
Subscriptions
Total
191 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-27210 | 1 Nodejs | 1 Nodejs | 2025-11-04 | N/A |
| An incomplete fix has been identified for CVE-2025-23084 in Node.js, specifically affecting Windows device names like CON, PRN, and AUX. This vulnerability affects Windows users of `path.join` API. | ||||
| CVE-2025-27209 | 1 Nodejs | 1 Nodejs | 2025-11-04 | N/A |
| The V8 release used in Node.js v24.0.0 has changed how string hashes are computed using rapidhash. This implementation re-introduces the HashDoS vulnerability as an attacker who can control the strings to be hashed can generate many hash collisions - an attacker can generate collisions even without knowing the hash-seed. * This vulnerability affects Node.js v24.x users. | ||||
| CVE-2025-23084 | 2 Microsoft, Nodejs | 2 Windows, Node.js | 2025-11-04 | 5.5 Medium |
| A vulnerability has been identified in Node.js, specifically affecting the handling of drive names in the Windows environment. Certain Node.js functions do not treat drive names as special on Windows. As a result, although Node.js assumes a relative path, it actually refers to the root directory. On Windows, a path that does not start with the file separator is treated as relative to the current directory. This vulnerability affects Windows users of `path.join` API. | ||||
| CVE-2024-27982 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-04 | 6.1 Medium |
| The team has identified a critical vulnerability in the http server of the most recent version of Node, where malformed headers can lead to HTTP request smuggling. Specifically, if a space is placed before a content-length header, it is not interpreted correctly, enabling attackers to smuggle in a second request within the body of the first. | ||||
| CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 367 Http Server, Opensearch Data Prepper, Apisix and 364 more | 2025-11-04 | 7.5 High |
| The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | ||||
| CVE-2022-3786 | 4 Fedoraproject, Nodejs, Openssl and 1 more | 4 Fedora, Node.js, Openssl and 1 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. | ||||
| CVE-2022-3602 | 5 Fedoraproject, Netapp, Nodejs and 2 more | 5 Fedora, Clustered Data Ontap, Node.js and 2 more | 2025-11-04 | 7.5 High |
| A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed the malicious certificate or for the application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address to overflow four attacker-controlled bytes on the stack. This buffer overflow could result in a crash (causing a denial of service) or potentially remote code execution. Many platforms implement stack overflow protections which would mitigate against the risk of remote code execution. The risk may be further mitigated based on stack layout for any given platform/compiler. Pre-announcements of CVE-2022-3602 described this issue as CRITICAL. Further analysis based on some of the mitigating factors described above have led this to be downgraded to HIGH. Users are still encouraged to upgrade to a new version as soon as possible. In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. Fixed in OpenSSL 3.0.7 (Affected 3.0.0,3.0.1,3.0.2,3.0.3,3.0.4,3.0.5,3.0.6). | ||||
| CVE-2024-27983 | 2 Nodejs, Redhat | 7 Nodejs, Enterprise Linux, Rhel Aus and 4 more | 2025-11-04 | 7.5 High |
| An attacker can make the Node.js HTTP/2 server completely unavailable by sending a small amount of HTTP/2 frames packets with a few HTTP/2 frames inside. It is possible to leave some data in nghttp2 memory after reset when headers with HTTP/2 CONTINUATION frame are sent to the server and then a TCP connection is abruptly closed by the client triggering the Http2Session destructor while header frames are still being processed (and stored in memory) causing a race condition. | ||||
| CVE-2023-46809 | 2 Nodejs, Redhat | 3 Nodejs, Enterprise Linux, Rhel Eus | 2025-11-04 | 7.4 High |
| Node.js versions which bundle an unpatched version of OpenSSL or run against a dynamically linked version of OpenSSL which are unpatched are vulnerable to the Marvin Attack - https://people.redhat.com/~hkario/marvin/, if PCKS #1 v1.5 padding is allowed when performing RSA descryption using a private key. | ||||
| CVE-2024-30261 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Undici, Openshift Devspaces | 2025-11-04 | 2.6 Low |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. An attacker can alter the `integrity` option passed to `fetch()`, allowing `fetch()` to accept requests as valid even if they have been tampered. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
| CVE-2024-30260 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Undici, Openshift Devspaces | 2025-11-04 | 3.9 Low |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici cleared Authorization and Proxy-Authorization headers for `fetch()`, but did not clear them for `undici.request()`. This vulnerability was patched in version(s) 5.28.4 and 6.11.1. | ||||
| CVE-2024-22019 | 4 Netapp, Node.js, Nodejs and 1 more | 6 Astra Control Center, Node.js, Node.js and 3 more | 2025-11-04 | 7.5 High |
| A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits. | ||||
| CVE-2023-32559 | 2 Nodejs, Redhat | 4 Node.js, Nodejs, Enterprise Linux and 1 more | 2025-11-04 | 7.5 High |
| A privilege escalation vulnerability exists in the experimental policy mechanism in all active release lines: 16.x, 18.x and, 20.x. The use of the deprecated API `process.binding()` can bypass the policy mechanism by requiring internal modules and eventually take advantage of `process.binding('spawn_sync')` run arbitrary code, outside of the limits defined in a `policy.json` file. Please note that at the time this CVE was issued, the policy is an experimental feature of Node.js. | ||||
| CVE-2023-30590 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-04 | 7.5 High |
| The generateKeys() API function returned from crypto.createDiffieHellman() only generates missing (or outdated) keys, that is, it only generates a private key if none has been set yet, but the function is also needed to compute the corresponding public key after calling setPrivateKey(). However, the documentation says this API call: "Generates private and public Diffie-Hellman key values". The documented behavior is very different from the actual behavior, and this difference could easily lead to security issues in applications that use these APIs as the DiffieHellman may be used as the basis for application-level security, implications are consequently broad. | ||||
| CVE-2023-30589 | 3 Fedoraproject, Nodejs, Redhat | 4 Fedora, Node.js, Enterprise Linux and 1 more | 2025-11-04 | 7.5 High |
| The llhttp parser in the http module in Node v20.2.0 does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). The CR character (without LF) is sufficient to delimit HTTP header fields in the llhttp parser. According to RFC7230 section 3, only the CRLF sequence should delimit each header-field. This impacts all Node.js active versions: v16, v18, and, v20 | ||||
| CVE-2023-39333 | 2 Nodejs, Redhat | 2 Nodejs, Enterprise Linux | 2025-11-03 | 5.3 Medium |
| Maliciously crafted export names in an imported WebAssembly module can inject JavaScript code. The injected code may be able to access data and functions that the WebAssembly module itself does not have access to, similar to as if the WebAssembly module was a JavaScript module. This vulnerability affects users of any active release line of Node.js. The vulnerable feature is only available if Node.js is started with the `--experimental-wasm-modules` command line option. | ||||
| CVE-2023-39332 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-11-03 | 9.8 Critical |
| Various `node:fs` functions allow specifying paths as either strings or `Uint8Array` objects. In Node.js environments, the `Buffer` class extends the `Uint8Array` class. Node.js prevents path traversal through strings (see CVE-2023-30584) and `Buffer` objects (see CVE-2023-32004), but not through non-`Buffer` `Uint8Array` objects. This is distinct from CVE-2023-32004 which only referred to `Buffer` objects. However, the vulnerability follows the same pattern using `Uint8Array` instead of `Buffer`. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
| CVE-2023-39331 | 2 Nodejs, Redhat | 2 Node.js, Enterprise Linux | 2025-11-03 | 7.5 High |
| A previously disclosed vulnerability (CVE-2023-30584) was patched insufficiently in commit 205f1e6. The new path traversal vulnerability arises because the implementation does not protect itself against the application overwriting built-in utility functions with user-defined implementations. Please note that at the time this CVE was issued, the permission model is an experimental feature of Node.js. | ||||
| CVE-2023-38552 | 3 Fedoraproject, Nodejs, Redhat | 3 Fedora, Node.js, Enterprise Linux | 2025-11-03 | 7.5 High |
| When the Node.js policy feature checks the integrity of a resource against a trusted manifest, the application can intercept the operation and return a forged checksum to the node's policy implementation, thus effectively disabling the integrity check. Impacts: This vulnerability affects all users using the experimental policy mechanism in all active release lines: 18.x and, 20.x. Please note that at the time this CVE was issued, the policy mechanism is an experimental feature of Node.js. | ||||
| CVE-2023-30588 | 2 Nodejs, Redhat | 3 Node.js, Enterprise Linux, Rhel Eus | 2025-11-03 | 5.3 Medium |
| When an invalid public key is used to create an x509 certificate using the crypto.X509Certificate() API a non-expect termination occurs making it susceptible to DoS attacks when the attacker could force interruptions of application processing, as the process terminates when accessing public key info of provided certificates from user code. The current context of the users will be gone, and that will cause a DoS scenario. This vulnerability affects all active Node.js versions v16, v18, and, v20. | ||||