Filtered by vendor Nodejs Subscriptions
Filtered by product Node.js Subscriptions
Total 160 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2016-1669 6 Canonical, Debian, Google and 3 more 11 Ubuntu Linux, Debian Linux, Chrome and 8 more 2025-04-12 8.8 High
The Zone::New function in zone.cc in Google V8 before 5.0.71.47, as used in Google Chrome before 50.0.2661.102, does not properly determine when to expand certain memory allocations, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via crafted JavaScript code.
CVE-2014-7191 2 Nodejs, Redhat 2 Node.js, Rhel Software Collections 2025-04-12 N/A
The qs module before 1.0.0 in Node.js does not call the compact function for array data, which allows remote attackers to cause a denial of service (memory consumption) by using a large index value to create a sparse array.
CVE-2015-5380 3 Google, Iojs, Nodejs 3 V8, Io.js, Node.js 2025-04-12 N/A
The Utf8DecoderBase::WriteUtf16Slow function in unicode-decoder.cc in Google V8, as used in Node.js before 0.12.6, io.js before 1.8.3 and 2.x before 2.3.3, and other products, does not verify that there is memory available for a UTF-16 surrogate pair, which allows remote attackers to cause a denial of service (memory corruption) or possibly have unspecified other impact via a crafted byte sequence.
CVE-2014-0224 9 Fedoraproject, Filezilla-project, Mariadb and 6 more 23 Fedora, Filezilla Server, Mariadb and 20 more 2025-04-12 7.4 High
OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly restrict processing of ChangeCipherSpec messages, which allows man-in-the-middle attackers to trigger use of a zero-length master key in certain OpenSSL-to-OpenSSL communications, and consequently hijack sessions or obtain sensitive information, via a crafted TLS handshake, aka the "CCS Injection" vulnerability.
CVE-2016-6306 7 Canonical, Debian, Hp and 4 more 11 Ubuntu Linux, Debian Linux, Icewall Federation Agent and 8 more 2025-04-12 5.9 Medium
The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c.
CVE-2016-2183 6 Cisco, Nodejs, Openssl and 3 more 14 Content Security Management Appliance, Node.js, Openssl and 11 more 2025-04-12 7.5 High
The DES and Triple DES ciphers, as used in the TLS, SSH, and IPSec protocols and other protocols and products, have a birthday bound of approximately four billion blocks, which makes it easier for remote attackers to obtain cleartext data via a birthday attack against a long-duration encrypted session, as demonstrated by an HTTPS session using Triple DES in CBC mode, aka a "Sweet32" attack.
CVE-2016-3956 3 Ibm, Nodejs, Npmjs 3 Sdk, Node.js, Npm 2025-04-12 7.5 High
The CLI in npm before 2.15.1 and 3.x before 3.8.3, as used in Node.js 0.10 before 0.10.44, 0.12 before 0.12.13, 4 before 4.4.2, and 5 before 5.10.0, includes bearer tokens with arbitrary requests, which allows remote HTTP servers to obtain sensitive information by reading Authorization headers.
CVE-2016-7052 3 Nodejs, Novell, Openssl 3 Node.js, Suse Linux Enterprise Module For Web Scripting, Openssl 2025-04-12 7.5 High
crypto/x509/x509_vfy.c in OpenSSL 1.0.2i allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) by triggering a CRL operation.
CVE-2016-6303 2 Nodejs, Openssl 2 Node.js, Openssl 2025-04-12 9.8 Critical
Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors.
CVE-2016-2216 2 Fedoraproject, Nodejs 2 Fedora, Node.js 2025-04-12 N/A
The HTTP header parsing code in Node.js 0.10.x before 0.10.42, 0.11.6 through 0.11.16, 0.12.x before 0.12.10, 4.x before 4.3.0, and 5.x before 5.6.0 allows remote attackers to bypass an HTTP response-splitting protection mechanism via UTF-8 encoded Unicode characters in the HTTP header, as demonstrated by %c4%8d%c4%8a.
CVE-2015-3193 3 Canonical, Nodejs, Openssl 3 Ubuntu Linux, Node.js, Openssl 2025-04-12 7.5 High
The Montgomery squaring implementation in crypto/bn/asm/x86_64-mont5.pl in OpenSSL 1.0.2 before 1.0.2e on the x86_64 platform, as used by the BN_mod_exp function, mishandles carry propagation and produces incorrect output, which makes it easier for remote attackers to obtain sensitive private-key information via an attack against use of a (1) Diffie-Hellman (DH) or (2) Diffie-Hellman Ephemeral (DHE) ciphersuite.
CVE-2016-0702 5 Canonical, Debian, Nodejs and 2 more 6 Ubuntu Linux, Debian Linux, Node.js and 3 more 2025-04-12 5.1 Medium
The MOD_EXP_CTIME_COPY_FROM_PREBUF function in crypto/bn/bn_exp.c in OpenSSL 1.0.1 before 1.0.1s and 1.0.2 before 1.0.2g does not properly consider cache-bank access times during modular exponentiation, which makes it easier for local users to discover RSA keys by running a crafted application on the same Intel Sandy Bridge CPU core as a victim and leveraging cache-bank conflicts, aka a "CacheBleed" attack.
CVE-2016-2178 7 Canonical, Debian, Nodejs and 4 more 10 Ubuntu Linux, Debian Linux, Node.js and 7 more 2025-04-12 5.5 Medium
The dsa_sign_setup function in crypto/dsa/dsa_ossl.c in OpenSSL through 1.0.2h does not properly ensure the use of constant-time operations, which makes it easier for local users to discover a DSA private key via a timing side-channel attack.
CVE-2016-5325 3 Nodejs, Redhat, Suse 4 Node.js, Openshift, Rhel Software Collections and 1 more 2025-04-12 N/A
CRLF injection vulnerability in the ServerResponse#writeHead function in Node.js 0.10.x before 0.10.47, 0.12.x before 0.12.16, 4.x before 4.6.0, and 6.x before 6.7.0 allows remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks via the reason argument.
CVE-2013-2882 4 Debian, Google, Nodejs and 1 more 6 Debian Linux, Chrome, Node.js and 3 more 2025-04-11 N/A
Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion."
CVE-2023-23936 2 Nodejs, Redhat 4 Node.js, Undici, Enterprise Linux and 1 more 2025-03-10 6.5 Medium
Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici.
CVE-2025-23088 1 Nodejs 1 Node.js 2025-03-01 8.8 High
This Record was REJECTED after determining it is not in compliance with CVE Program requirements regarding assignment for vulnerabilities
CVE-2019-9511 12 Apache, Apple, Canonical and 9 more 29 Traffic Server, Mac Os X, Swiftnio and 26 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9518 11 Apache, Apple, Canonical and 8 more 26 Traffic Server, Mac Os X, Swiftnio and 23 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
CVE-2019-9513 12 Apache, Apple, Canonical and 9 more 25 Traffic Server, Mac Os X, Swiftnio and 22 more 2025-01-14 7.5 High
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.