Total
1292 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-42318 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2025-05-05 | 6.5 Medium |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | ||||
CVE-2022-32206 | 7 Debian, Fedoraproject, Haxx and 4 more | 35 Debian Linux, Fedora, Curl and 32 more | 2025-05-05 | 6.5 Medium |
curl < 7.84.0 supports "chained" HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable "links" in this "decompression chain" was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a "malloc bomb", makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors. | ||||
CVE-2022-32205 | 7 Apple, Debian, Fedoraproject and 4 more | 29 Macos, Debian Linux, Fedora and 26 more | 2025-05-05 | 4.3 Medium |
A malicious server can serve excessive amounts of `Set-Cookie:` headers in a HTTP response to curl and curl < 7.84.0 stores all of them. A sufficiently large amount of (big) cookies make subsequent HTTP requests to this, or other servers to which the cookies match, create requests that become larger than the threshold that curl uses internally to avoid sending crazy large requests (1048576 bytes) and instead returns an error.This denial state might remain for as long as the same cookies are kept, match and haven't expired. Due to cookie matching rules, a server on `foo.example.com` can set cookies that also would match for `bar.example.com`, making it it possible for a "sister server" to effectively cause a denial of service for a sibling site on the same second level domain using this method. | ||||
CVE-2024-1066 | 1 Gitlab | 1 Gitlab | 2025-05-05 | 6.5 Medium |
An issue has been discovered in GitLab EE affecting all versions from 13.3.0 prior to 16.6.7, 16.7 prior to 16.7.5, and 16.8 prior to 16.8.2 which allows an attacker to do a resource exhaustion using GraphQL `vulnerabilitiesCountByDay` | ||||
CVE-2023-0921 | 1 Gitlab | 1 Gitlab | 2025-05-05 | 4.3 Medium |
A lack of length validation in GitLab CE/EE affecting all versions from 8.3 before 15.10.8, 15.11 before 15.11.7, and 16.0 before 16.0.2 allows an authenticated attacker to create a large Issue description via GraphQL which, when repeatedly requested, saturates CPU usage. | ||||
CVE-2023-4647 | 1 Gitlab | 1 Gitlab | 2025-05-05 | 5.3 Medium |
An issue has been discovered in GitLab affecting all versions starting from 15.2 before 16.1.5, all versions starting from 16.2 before 16.2.5, all versions starting from 16.3 before 16.3.1 in which the projects API pagination can be skipped, potentially leading to DoS on certain instances. | ||||
CVE-2023-3246 | 1 Gitlab | 1 Gitlab | 2025-05-05 | 4.3 Medium |
An issue has been discovered in GitLab EE/CE affecting all versions starting before 16.3.6, all versions starting from 16.4 before 16.4.2, all versions starting from 16.5 before 16.5.1 which allows an attackers to block Sidekiq job processor. | ||||
CVE-2024-58089 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double accounting race when btrfs_run_delalloc_range() failed [BUG] When running btrfs with block size (4K) smaller than page size (64K, aarch64), there is a very high chance to crash the kernel at generic/750, with the following messages: (before the call traces, there are 3 extra debug messages added) BTRFS warning (device dm-3): read-write for sector size 4096 with page size 65536 is experimental BTRFS info (device dm-3): checking UUID tree hrtimer: interrupt took 5451385 ns BTRFS error (device dm-3): cow_file_range failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): run_delalloc_nocow failed, root=4957 inode=257 start=1605632 len=69632: -28 BTRFS error (device dm-3): failed to run delalloc range, root=4957 ino=257 folio=1572864 submit_bitmap=8-15 start=1605632 len=69632: -28 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 3020984 at ordered-data.c:360 can_finish_ordered_extent+0x370/0x3b8 [btrfs] CPU: 2 UID: 0 PID: 3020984 Comm: kworker/u24:1 Tainted: G OE 6.13.0-rc1-custom+ #89 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : can_finish_ordered_extent+0x370/0x3b8 [btrfs] lr : can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] Call trace: can_finish_ordered_extent+0x370/0x3b8 [btrfs] (P) can_finish_ordered_extent+0x1ec/0x3b8 [btrfs] (L) btrfs_mark_ordered_io_finished+0x130/0x2b8 [btrfs] extent_writepage+0x10c/0x3b8 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x160 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x74/0xa0 start_delalloc_inodes+0x17c/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x17c/0x288 [btrfs] shrink_delalloc+0x11c/0x280 [btrfs] flush_space+0x288/0x328 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x228/0x680 worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1605632 OE len=16384 to_dec=16384 left=0 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1622016 OE len=12288 to_dec=12288 left=0 Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 BTRFS critical (device dm-3): bad ordered extent accounting, root=4957 ino=257 OE offset=1634304 OE len=8192 to_dec=4096 left=0 CPU: 1 UID: 0 PID: 3286940 Comm: kworker/u24:3 Tainted: G W OE 6.13.0-rc1-custom+ #89 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: btrfs_work_helper [btrfs] (btrfs-endio-write) pstate: 404000c5 (nZcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : process_one_work+0x110/0x680 lr : worker_thread+0x1bc/0x360 Call trace: process_one_work+0x110/0x680 (P) worker_thread+0x1bc/0x360 (L) worker_thread+0x1bc/0x360 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: f84086a1 f9000fe1 53041c21 b9003361 (f9400661) ---[ end trace 0000000000000000 ]--- Kernel panic - not syncing: Oops: Fatal exception SMP: stopping secondary CPUs SMP: failed to stop secondary CPUs 2-3 Dumping ftrace buffer: (ftrace buffer empty) Kernel Offset: 0x275bb9540000 from 0xffff800080000000 PHYS_OFFSET: 0xffff8fbba0000000 CPU features: 0x100,00000070,00801250,8201720b [CAUSE] The above warning is triggered immediately after the delalloc range failure, this happens in the following sequence: - Range [1568K, 1636K) is dirty 1536K 1568K 1600K 1636K 1664K | |/////////|////////| | Where 1536K, 1600K and 1664K are page boundaries (64K page size) - Enter extent_writepage() for page 1536K - Enter run_delalloc_nocow() with locke ---truncated--- | ||||
CVE-2024-42258 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm: huge_memory: use !CONFIG_64BIT to relax huge page alignment on 32 bit machines Yves-Alexis Perez reported commit 4ef9ad19e176 ("mm: huge_memory: don't force huge page alignment on 32 bit") didn't work for x86_32 [1]. It is because x86_32 uses CONFIG_X86_32 instead of CONFIG_32BIT. !CONFIG_64BIT should cover all 32 bit machines. [1] https://lore.kernel.org/linux-mm/CAHbLzkr1LwH3pcTgM+aGQ31ip2bKqiqEQ8=FQB+t2c3dhNKNHA@mail.gmail.com/ | ||||
CVE-2024-26798 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: fbcon: always restore the old font data in fbcon_do_set_font() Commit a5a923038d70 (fbdev: fbcon: Properly revert changes when vc_resize() failed) started restoring old font data upon failure (of vc_resize()). But it performs so only for user fonts. It means that the "system"/internal fonts are not restored at all. So in result, the very first call to fbcon_do_set_font() performs no restore at all upon failing vc_resize(). This can be reproduced by Syzkaller to crash the system on the next invocation of font_get(). It's rather hard to hit the allocation failure in vc_resize() on the first font_set(), but not impossible. Esp. if fault injection is used to aid the execution/failure. It was demonstrated by Sirius: BUG: unable to handle page fault for address: fffffffffffffff8 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD cb7b067 P4D cb7b067 PUD cb7d067 PMD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 8007 Comm: poc Not tainted 6.7.0-g9d1694dc91ce #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:fbcon_get_font+0x229/0x800 drivers/video/fbdev/core/fbcon.c:2286 Call Trace: <TASK> con_font_get drivers/tty/vt/vt.c:4558 [inline] con_font_op+0x1fc/0xf20 drivers/tty/vt/vt.c:4673 vt_k_ioctl drivers/tty/vt/vt_ioctl.c:474 [inline] vt_ioctl+0x632/0x2ec0 drivers/tty/vt/vt_ioctl.c:752 tty_ioctl+0x6f8/0x1570 drivers/tty/tty_io.c:2803 vfs_ioctl fs/ioctl.c:51 [inline] ... So restore the font data in any case, not only for user fonts. Note the later 'if' is now protected by 'old_userfont' and not 'old_data' as the latter is always set now. (And it is supposed to be non-NULL. Otherwise we would see the bug above again.) | ||||
CVE-2024-26618 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: arm64/sme: Always exit sme_alloc() early with existing storage When sme_alloc() is called with existing storage and we are not flushing we will always allocate new storage, both leaking the existing storage and corrupting the state. Fix this by separating the checks for flushing and for existing storage as we do for SVE. Callers that reallocate (eg, due to changing the vector length) should call sme_free() themselves. | ||||
CVE-2024-57838 | 2025-05-04 | 4.4 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: s390/entry: Mark IRQ entries to fix stack depot warnings The stack depot filters out everything outside of the top interrupt context as an uninteresting or irrelevant part of the stack traces. This helps with stack trace de-duplication, avoiding an explosion of saved stack traces that share the same IRQ context code path but originate from different randomly interrupted points, eventually exhausting the stack depot. Filtering uses in_irqentry_text() to identify functions within the .irqentry.text and .softirqentry.text sections, which then become the last stack trace entries being saved. While __do_softirq() is placed into the .softirqentry.text section by common code, populating .irqentry.text is architecture-specific. Currently, the .irqentry.text section on s390 is empty, which prevents stack depot filtering and de-duplication and could result in warnings like: Stack depot reached limit capacity WARNING: CPU: 0 PID: 286113 at lib/stackdepot.c:252 depot_alloc_stack+0x39a/0x3c8 with PREEMPT and KASAN enabled. Fix this by moving the IO/EXT interrupt handlers from .kprobes.text into the .irqentry.text section and updating the kprobes blacklist to include the .irqentry.text section. This is done only for asynchronous interrupts and explicitly not for program checks, which are synchronous and where the context beyond the program check is important to preserve. Despite machine checks being somewhat in between, they are extremely rare, and preserving context when possible is also of value. SVCs and Restart Interrupts are not relevant, one being always at the boundary to user space and the other being a one-time thing. IRQ entries filtering is also optionally used in ftrace function graph, where the same logic applies. | ||||
CVE-2024-56722 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix cpu stuck caused by printings during reset During reset, cmd to destroy resources such as qp, cq, and mr may fail, and error logs will be printed. When a large number of resources are destroyed, there will be lots of printings, and it may lead to a cpu stuck. Delete some unnecessary printings and replace other printing functions in these paths with the ratelimited version. | ||||
CVE-2024-50285 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ksmbd: check outstanding simultaneous SMB operations If Client send simultaneous SMB operations to ksmbd, It exhausts too much memory through the "ksmbd_work_cacheā. It will cause OOM issue. ksmbd has a credit mechanism but it can't handle this problem. This patch add the check if it exceeds max credits to prevent this problem by assuming that one smb request consumes at least one credit. | ||||
CVE-2024-50271 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: signal: restore the override_rlimit logic Prior to commit d64696905554 ("Reimplement RLIMIT_SIGPENDING on top of ucounts") UCOUNT_RLIMIT_SIGPENDING rlimit was not enforced for a class of signals. However now it's enforced unconditionally, even if override_rlimit is set. This behavior change caused production issues. For example, if the limit is reached and a process receives a SIGSEGV signal, sigqueue_alloc fails to allocate the necessary resources for the signal delivery, preventing the signal from being delivered with siginfo. This prevents the process from correctly identifying the fault address and handling the error. From the user-space perspective, applications are unaware that the limit has been reached and that the siginfo is effectively 'corrupted'. This can lead to unpredictable behavior and crashes, as we observed with java applications. Fix this by passing override_rlimit into inc_rlimit_get_ucounts() and skip the comparison to max there if override_rlimit is set. This effectively restores the old behavior. | ||||
CVE-2024-49974 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: NFSD: Limit the number of concurrent async COPY operations Nothing appears to limit the number of concurrent async COPY operations that clients can start. In addition, AFAICT each async COPY can copy an unlimited number of 4MB chunks, so can run for a long time. Thus IMO async COPY can become a DoS vector. Add a restriction mechanism that bounds the number of concurrent background COPY operations. Start simple and try to be fair -- this patch implements a per-namespace limit. An async COPY request that occurs while this limit is exceeded gets NFS4ERR_DELAY. The requesting client can choose to send the request again after a delay or fall back to a traditional read/write style copy. If there is need to make the mechanism more sophisticated, we can visit that in future patches. | ||||
CVE-2024-46745 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: Input: uinput - reject requests with unreasonable number of slots When exercising uinput interface syzkaller may try setting up device with a really large number of slots, which causes memory allocation failure in input_mt_init_slots(). While this allocation failure is handled properly and request is rejected, it results in syzkaller reports. Additionally, such request may put undue burden on the system which will try to free a lot of memory for a bogus request. Fix it by limiting allowed number of slots to 100. This can easily be extended if we see devices that can track more than 100 contacts. | ||||
CVE-2024-45014 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: s390/boot: Avoid possible physmem_info segment corruption When physical memory for the kernel image is allocated it does not consider extra memory required for offsetting the image start to match it with the lower 20 bits of KASLR virtual base address. That might lead to kernel access beyond its memory range. | ||||
CVE-2024-45012 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: nouveau/firmware: use dma non-coherent allocator Currently, enabling SG_DEBUG in the kernel will cause nouveau to hit a BUG() on startup, when the iommu is enabled: kernel BUG at include/linux/scatterlist.h:187! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 7 PID: 930 Comm: (udev-worker) Not tainted 6.9.0-rc3Lyude-Test+ #30 Hardware name: MSI MS-7A39/A320M GAMING PRO (MS-7A39), BIOS 1.I0 01/22/2019 RIP: 0010:sg_init_one+0x85/0xa0 Code: 69 88 32 01 83 e1 03 f6 c3 03 75 20 a8 01 75 1e 48 09 cb 41 89 54 24 08 49 89 1c 24 41 89 6c 24 0c 5b 5d 41 5c e9 7b b9 88 00 <0f> 0b 0f 0b 0f 0b 48 8b 05 5e 46 9a 01 eb b2 66 66 2e 0f 1f 84 00 RSP: 0018:ffffa776017bf6a0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffa77600d87000 RCX: 000000000000002b RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffffa77680d87000 RBP: 000000000000e000 R08: 0000000000000000 R09: 0000000000000000 R10: ffff98f4c46aa508 R11: 0000000000000000 R12: ffff98f4c46aa508 R13: ffff98f4c46aa008 R14: ffffa77600d4a000 R15: ffffa77600d4a018 FS: 00007feeb5aae980(0000) GS:ffff98f5c4dc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f22cb9a4520 CR3: 00000001043ba000 CR4: 00000000003506f0 Call Trace: <TASK> ? die+0x36/0x90 ? do_trap+0xdd/0x100 ? sg_init_one+0x85/0xa0 ? do_error_trap+0x65/0x80 ? sg_init_one+0x85/0xa0 ? exc_invalid_op+0x50/0x70 ? sg_init_one+0x85/0xa0 ? asm_exc_invalid_op+0x1a/0x20 ? sg_init_one+0x85/0xa0 nvkm_firmware_ctor+0x14a/0x250 [nouveau] nvkm_falcon_fw_ctor+0x42/0x70 [nouveau] ga102_gsp_booter_ctor+0xb4/0x1a0 [nouveau] r535_gsp_oneinit+0xb3/0x15f0 [nouveau] ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f ? nvkm_udevice_new+0x95/0x140 [nouveau] ? srso_return_thunk+0x5/0x5f ? srso_return_thunk+0x5/0x5f ? ktime_get+0x47/0xb0 Fix this by using the non-coherent allocator instead, I think there might be a better answer to this, but it involve ripping up some of APIs using sg lists. | ||||
CVE-2024-43856 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: dma: fix call order in dmam_free_coherent dmam_free_coherent() frees a DMA allocation, which makes the freed vaddr available for reuse, then calls devres_destroy() to remove and free the data structure used to track the DMA allocation. Between the two calls, it is possible for a concurrent task to make an allocation with the same vaddr and add it to the devres list. If this happens, there will be two entries in the devres list with the same vaddr and devres_destroy() can free the wrong entry, triggering the WARN_ON() in dmam_match. Fix by destroying the devres entry before freeing the DMA allocation. kokonut //net/encryption http://sponge2/b9145fe6-0f72-4325-ac2f-a84d81075b03 |