Total
709 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-61911 | 2025-10-10 | N/A | ||
python-ldap is a lightweight directory access protocol (LDAP) client API for Python. In versions prior to 3.4.5, the sanitization method `ldap.filter.escape_filter_chars` can be tricked to skip escaping of special characters when a crafted `list` or `dict` is supplied as the `assertion_value` parameter, and the non-default `escape_mode=1` is configured. The method `ldap.filter.escape_filter_chars` supports 3 different escaping modes. `escape_mode=0` (default) and `escape_mode=2` happen to raise exceptions when a `list` or `dict` object is supplied as the `assertion_value` parameter. However, `escape_mode=1` computes without performing adequate logic to ensure a fully escaped return value. If an application relies on the vulnerable method in the `python-ldap` library to escape untrusted user input, an attacker might be able to abuse the vulnerability to launch ldap injection attacks which could potentially disclose or manipulate ldap data meant to be inaccessible to them. Version 3.4.5 fixes the issue by adding a type check at the start of the `ldap.filter.escape_filter_chars` method to raise an exception when the supplied `assertion_value` parameter is not of type `str`. | ||||
CVE-2024-34391 | 1 Libxmljs Project | 1 Libxmljs | 2025-10-10 | 8.1 High |
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking a function on the result of attrs() that was called on a parsed node. This vulnerability might lead to denial of service (on both 32-bit systems and 64-bit systems), data leak, infinite loop and remote code execution (on 32-bit systems with the XML_PARSE_HUGE flag enabled). | ||||
CVE-2024-34392 | 1 Libxmljs Project | 1 Libxmljs | 2025-10-10 | 8.1 High |
libxmljs is vulnerable to a type confusion vulnerability when parsing a specially crafted XML while invoking the namespaces() function (which invokes _wrap__xmlNode_nsDef_get()) on a grand-child of a node that refers to an entity. This vulnerability can lead to denial of service and remote code execution. | ||||
CVE-2023-36017 | 1 Microsoft | 13 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 10 more | 2025-10-08 | 8.8 High |
Windows Scripting Engine Memory Corruption Vulnerability | ||||
CVE-2025-59717 | 1 Digitalocean | 1 Do-markdownit | 2025-10-08 | 5.4 Medium |
In the @digitalocean/do-markdownit package through 1.16.1 (in npm), the callout and fence_environment plugins perform .includes substring matching if allowedClasses or allowedEnvironments is a string (instead of an array). | ||||
CVE-2025-8354 | 1 Autodesk | 2 Revit, Revit Lt | 2025-10-06 | 7.8 High |
A maliciously crafted RFA file, when parsed through Autodesk Revit, can force a Type Confusion vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process. | ||||
CVE-2025-7259 | 1 Mongodb | 1 Mongodb | 2025-10-03 | 6.5 Medium |
An authorized user can issue queries with duplicate _id fields, that leads to unexpected behavior in MongoDB Server, which may result to crash. This issue can only be triggered by authorized users and cause Denial of Service. This issue affects MongoDB Server v8.1 version 8.1.0. | ||||
CVE-2025-53808 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2025-54094 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2025-53810 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2025-54104 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2025-54915 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2025-54109 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-10-02 | 6.7 Medium |
Access of resource using incompatible type ('type confusion') in Windows Defender Firewall Service allows an authorized attacker to elevate privileges locally. | ||||
CVE-2024-50175 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: media: qcom: camss: Remove use_count guard in stop_streaming The use_count check was introduced so that multiple concurrent Raw Data Interfaces RDIs could be driven by different virtual channels VCs on the CSIPHY input driving the video pipeline. This is an invalid use of use_count though as use_count pertains to the number of times a video entity has been opened by user-space not the number of active streams. If use_count and stream-on count don't agree then stop_streaming() will break as is currently the case and has become apparent when using CAMSS with libcamera's released softisp 0.3. The use of use_count like this is a bit hacky and right now breaks regular usage of CAMSS for a single stream case. Stopping qcam results in the splat below, and then it cannot be started again and any attempts to do so fails with -EBUSY. [ 1265.509831] WARNING: CPU: 5 PID: 919 at drivers/media/common/videobuf2/videobuf2-core.c:2183 __vb2_queue_cancel+0x230/0x2c8 [videobuf2_common] ... [ 1265.510630] Call trace: [ 1265.510636] __vb2_queue_cancel+0x230/0x2c8 [videobuf2_common] [ 1265.510648] vb2_core_streamoff+0x24/0xcc [videobuf2_common] [ 1265.510660] vb2_ioctl_streamoff+0x5c/0xa8 [videobuf2_v4l2] [ 1265.510673] v4l_streamoff+0x24/0x30 [videodev] [ 1265.510707] __video_do_ioctl+0x190/0x3f4 [videodev] [ 1265.510732] video_usercopy+0x304/0x8c4 [videodev] [ 1265.510757] video_ioctl2+0x18/0x34 [videodev] [ 1265.510782] v4l2_ioctl+0x40/0x60 [videodev] ... [ 1265.510944] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 0 in active state [ 1265.511175] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 1 in active state [ 1265.511398] videobuf2_common: driver bug: stop_streaming operation is leaving buffer 2 in active st One CAMSS specific way to handle multiple VCs on the same RDI might be: - Reference count each pipeline enable for CSIPHY, CSID, VFE and RDIx. - The video buffers are already associated with msm_vfeN_rdiX so release video buffers when told to do so by stop_streaming. - Only release the power-domains for the CSIPHY, CSID and VFE when their internal refcounts drop. Either way refusing to release video buffers based on use_count is erroneous and should be reverted. The silicon enabling code for selecting VCs is perfectly fine. Its a "known missing feature" that concurrent VCs won't work with CAMSS right now. Initial testing with this code didn't show an error but, SoftISP and "real" usage with Google Hangouts breaks the upstream code pretty quickly, we need to do a partial revert and take another pass at VCs. This commit partially reverts commit 89013969e232 ("media: camss: sm8250: Pipeline starting and stopping for multiple virtual channels") | ||||
CVE-2024-56717 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: mscc: ocelot: fix incorrect IFH SRC_PORT field in ocelot_ifh_set_basic() Packets injected by the CPU should have a SRC_PORT field equal to the CPU port module index in the Analyzer block (ocelot->num_phys_ports). The blamed commit copied the ocelot_ifh_set_basic() call incorrectly from ocelot_xmit_common() in net/dsa/tag_ocelot.c. Instead of calling with "x", it calls with BIT_ULL(x), but the field is not a port mask, but rather a single port index. [ side note: this is the technical debt of code duplication :( ] The error used to be silent and doesn't appear to have other user-visible manifestations, but with new changes in the packing library, it now fails loudly as follows: ------------[ cut here ]------------ Cannot store 0x40 inside bits 46-43 - will truncate sja1105 spi2.0: xmit timed out WARNING: CPU: 1 PID: 102 at lib/packing.c:98 __pack+0x90/0x198 sja1105 spi2.0: timed out polling for tstamp CPU: 1 UID: 0 PID: 102 Comm: felix_xmit Tainted: G W N 6.13.0-rc1-00372-gf706b85d972d-dirty #2605 Call trace: __pack+0x90/0x198 (P) __pack+0x90/0x198 (L) packing+0x78/0x98 ocelot_ifh_set_basic+0x260/0x368 ocelot_port_inject_frame+0xa8/0x250 felix_port_deferred_xmit+0x14c/0x258 kthread_worker_fn+0x134/0x350 kthread+0x114/0x138 The code path pertains to the ocelot switchdev driver and to the felix secondary DSA tag protocol, ocelot-8021q. Here seen with ocelot-8021q. The messenger (packing) is not really to blame, so fix the original commit instead. | ||||
CVE-2024-56671 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: gpio: graniterapids: Fix vGPIO driver crash Move setting irq_chip.name from probe() function to the initialization of "irq_chip" struct in order to fix vGPIO driver crash during bootup. Crash was caused by unauthorized modification of irq_chip.name field where irq_chip struct was initialized as const. This behavior is a consequence of suboptimal implementation of gpio_irq_chip_set_chip(), which should be changed to avoid casting away const qualifier. Crash log: BUG: unable to handle page fault for address: ffffffffc0ba81c0 /#PF: supervisor write access in kernel mode /#PF: error_code(0x0003) - permissions violation CPU: 33 UID: 0 PID: 1075 Comm: systemd-udevd Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 #1 Hardware name: Intel Corporation Kaseyville RP/Kaseyville RP, BIOS KVLDCRB1.PGS.0026.D73.2410081258 10/08/2024 RIP: 0010:gnr_gpio_probe+0x171/0x220 [gpio_graniterapids] | ||||
CVE-2024-56656 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix aggregation ID mask to prevent oops on 5760X chips The 5760X (P7) chip's HW GRO/LRO interface is very similar to that of the previous generation (5750X or P5). However, the aggregation ID fields in the completion structures on P7 have been redefined from 16 bits to 12 bits. The freed up 4 bits are redefined for part of the metadata such as the VLAN ID. The aggregation ID mask was not modified when adding support for P7 chips. Including the extra 4 bits for the aggregation ID can potentially cause the driver to store or fetch the packet header of GRO/LRO packets in the wrong TPA buffer. It may hit the BUG() condition in __skb_pull() because the SKB contains no valid packet header: kernel BUG at include/linux/skbuff.h:2766! Oops: invalid opcode: 0000 1 PREEMPT SMP NOPTI CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Kdump: loaded Tainted: G OE 6.12.0-rc2+ #7 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: Dell Inc. PowerEdge R760/0VRV9X, BIOS 1.0.1 12/27/2022 RIP: 0010:eth_type_trans+0xda/0x140 Code: 80 00 00 00 eb c1 8b 47 70 2b 47 74 48 8b 97 d0 00 00 00 83 f8 01 7e 1b 48 85 d2 74 06 66 83 3a ff 74 09 b8 00 04 00 00 eb a5 <0f> 0b b8 00 01 00 00 eb 9c 48 85 ff 74 eb 31 f6 b9 02 00 00 00 48 RSP: 0018:ff615003803fcc28 EFLAGS: 00010283 RAX: 00000000000022d2 RBX: 0000000000000003 RCX: ff2e8c25da334040 RDX: 0000000000000040 RSI: ff2e8c25c1ce8000 RDI: ff2e8c25869f9000 RBP: ff2e8c258c31c000 R08: ff2e8c25da334000 R09: 0000000000000001 R10: ff2e8c25da3342c0 R11: ff2e8c25c1ce89c0 R12: ff2e8c258e0990b0 R13: ff2e8c25bb120000 R14: ff2e8c25c1ce89c0 R15: ff2e8c25869f9000 FS: 0000000000000000(0000) GS:ff2e8c34be300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055f05317e4c8 CR3: 000000108bac6006 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? die+0x33/0x90 ? do_trap+0xd9/0x100 ? eth_type_trans+0xda/0x140 ? do_error_trap+0x65/0x80 ? eth_type_trans+0xda/0x140 ? exc_invalid_op+0x4e/0x70 ? eth_type_trans+0xda/0x140 ? asm_exc_invalid_op+0x16/0x20 ? eth_type_trans+0xda/0x140 bnxt_tpa_end+0x10b/0x6b0 [bnxt_en] ? bnxt_tpa_start+0x195/0x320 [bnxt_en] bnxt_rx_pkt+0x902/0xd90 [bnxt_en] ? __bnxt_tx_int.constprop.0+0x89/0x300 [bnxt_en] ? kmem_cache_free+0x343/0x440 ? __bnxt_tx_int.constprop.0+0x24f/0x300 [bnxt_en] __bnxt_poll_work+0x193/0x370 [bnxt_en] bnxt_poll_p5+0x9a/0x300 [bnxt_en] ? try_to_wake_up+0x209/0x670 __napi_poll+0x29/0x1b0 Fix it by redefining the aggregation ID mask for P5_PLUS chips to be 12 bits. This will work because the maximum aggregation ID is less than 4096 on all P5_PLUS chips. | ||||
CVE-2025-10585 | 4 Apple, Google, Linux and 1 more | 5 Macos, Chrome, V8 and 2 more | 2025-09-30 | 9.8 Critical |
Type confusion in V8 in Google Chrome prior to 140.0.7339.185 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
CVE-2025-8011 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-09-26 | 8.8 High |
Type Confusion in V8 in Google Chrome prior to 138.0.7204.168 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) | ||||
CVE-2025-8010 | 4 Apple, Google, Linux and 1 more | 4 Macos, Chrome, Linux Kernel and 1 more | 2025-09-26 | 8.8 High |
Type Confusion in V8 in Google Chrome prior to 138.0.7204.168 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High) |