Filtered by vendor Opensuse
Subscriptions
Total
3287 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2019-16782 | 4 Fedoraproject, Opensuse, Rack and 1 more | 6 Fedora, Leap, Rack and 3 more | 2025-02-13 | 6.3 Medium |
There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison. | ||||
CVE-2018-19873 | 5 Canonical, Debian, Opensuse and 2 more | 6 Ubuntu Linux, Debian Linux, Backports and 3 more | 2025-02-11 | 9.8 Critical |
An issue was discovered in Qt before 5.11.3. QBmpHandler has a buffer overflow via BMP data. | ||||
CVE-2019-19344 | 4 Canonical, Opensuse, Samba and 1 more | 7 Ubuntu Linux, Leap, Samba and 4 more | 2025-01-14 | 6.5 Medium |
There is a use-after-free issue in all samba 4.9.x versions before 4.9.18, all samba 4.10.x versions before 4.10.12 and all samba 4.11.x versions before 4.11.5, essentially due to a call to realloc() while other local variables still point at the original buffer. | ||||
CVE-2019-9517 | 12 Apache, Apple, Canonical and 9 more | 28 Http Server, Traffic Server, Mac Os X and 25 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. | ||||
CVE-2019-9511 | 12 Apache, Apple, Canonical and 9 more | 29 Traffic Server, Mac Os X, Swiftnio and 26 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||
CVE-2019-9515 | 12 Apache, Apple, Canonical and 9 more | 36 Traffic Server, Mac Os X, Swiftnio and 33 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. | ||||
CVE-2019-9518 | 11 Apache, Apple, Canonical and 8 more | 26 Traffic Server, Mac Os X, Swiftnio and 23 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU. | ||||
CVE-2019-9513 | 12 Apache, Apple, Canonical and 9 more | 25 Traffic Server, Mac Os X, Swiftnio and 22 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. | ||||
CVE-2017-5753 | 14 Arm, Canonical, Debian and 11 more | 396 Cortex-a12, Cortex-a12 Firmware, Cortex-a15 and 393 more | 2025-01-14 | 5.6 Medium |
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis. | ||||
CVE-2019-9514 | 13 Apache, Apple, Canonical and 10 more | 44 Traffic Server, Mac Os X, Swiftnio and 41 more | 2025-01-14 | 7.5 High |
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. | ||||
CVE-2019-9516 | 12 Apache, Apple, Canonical and 9 more | 24 Traffic Server, Mac Os X, Swiftnio and 21 more | 2025-01-14 | 6.5 Medium |
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. | ||||
CVE-2023-32181 | 1 Opensuse | 1 Libeconf | 2025-01-10 | 3.3 Low |
A Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') vulnerability in openSUSE libeconf allows for DoS via malformed configuration files This issue affects libeconf: before 0.5.2. | ||||
CVE-2017-18017 | 9 Arista, Canonical, Debian and 6 more | 33 Eos, Ubuntu Linux, Debian Linux and 30 more | 2025-01-03 | 9.8 Critical |
The tcpmss_mangle_packet function in net/netfilter/xt_TCPMSS.c in the Linux kernel before 4.11, and 4.9.x before 4.9.36, allows remote attackers to cause a denial of service (use-after-free and memory corruption) or possibly have unspecified other impact by leveraging the presence of xt_TCPMSS in an iptables action. | ||||
CVE-2023-32184 | 1 Opensuse | 1 Welcome | 2024-11-21 | 7.8 High |
A Insecure Storage of Sensitive Information vulnerability in openSUSE opensuse-welcome allows local attackers to execute code as the user that runs opensuse-welcome if a custom layout is chosen This issue affects opensuse-welcome: from 0.1 before 0.1.9+git.35.4b9444a. | ||||
CVE-2023-32183 | 1 Opensuse | 1 Tumbleweed | 2024-11-21 | 7.8 High |
Incorrect Default Permissions vulnerability in the openSUSE Tumbleweed hawk2 package allows users with access to the hacluster to escalate to root This issue affects openSUSE Tumbleweed. | ||||
CVE-2023-32182 | 2 Opensuse, Suse | 3 Leap, Linux Enterprise High Performance Computing, Suse Linux Enterprise Desktop | 2024-11-21 | 5.9 Medium |
A Improper Link Resolution Before File Access ('Link Following') vulnerability in SUSE SUSE Linux Enterprise Desktop 15 SP5 postfix, SUSE SUSE Linux Enterprise High Performance Computing 15 SP5 postfix, SUSE openSUSE Leap 15.5 postfix.This issue affects SUSE Linux Enterprise Desktop 15 SP5: before 3.7.3-150500.3.5.1; SUSE Linux Enterprise High Performance Computing 15 SP5: before 3.7.3-150500.3.5.1; openSUSE Leap 15.5 : before 3.7.3-150500.3.5.1. | ||||
CVE-2022-31252 | 2 Opensuse, Suse | 3 Leap, Leap Micro, Linux Enterprise Server | 2024-11-21 | 4.4 Medium |
A Incorrect Authorization vulnerability in chkstat of SUSE Linux Enterprise Server 12-SP5; openSUSE Leap 15.3, openSUSE Leap 15.4, openSUSE Leap Micro 5.2 did not consider group writable path components, allowing local attackers with access to a group what can write to a location included in the path to a privileged binary to influence path resolution. This issue affects: SUSE Linux Enterprise Server 12-SP5 permissions versions prior to 20170707. openSUSE Leap 15.3 permissions versions prior to 20200127. openSUSE Leap 15.4 permissions versions prior to 20201225. openSUSE Leap Micro 5.2 permissions versions prior to 20181225. | ||||
CVE-2022-31251 | 1 Opensuse | 1 Factory | 2024-11-21 | 6.5 Medium |
A Incorrect Default Permissions vulnerability in the packaging of the slurm testsuite of openSUSE Factory allows local attackers with control over the slurm user to escalate to root. This issue affects: openSUSE Factory slurm versions prior to 22.05.2-3.3. | ||||
CVE-2022-31250 | 1 Opensuse | 1 Tumbleweed | 2024-11-21 | 7.1 High |
A UNIX Symbolic Link (Symlink) Following vulnerability in keylime of openSUSE Tumbleweed allows local attackers to escalate from the keylime user to root. This issue affects: openSUSE Tumbleweed keylime versions prior to 6.4.2-1.1. | ||||
CVE-2022-21950 | 2 Opensuse, Suse | 4 Backports Sle, Canna, Factory and 1 more | 2024-11-21 | 5.3 Medium |
A Improper Access Control vulnerability in the systemd service of cana in openSUSE Backports SLE-15-SP3, openSUSE Backports SLE-15-SP4 allows local users to hijack the UNIX domain socket This issue affects: openSUSE Backports SLE-15-SP3 canna versions prior to canna-3.7p3-bp153.2.3.1. openSUSE Backports SLE-15-SP4 canna versions prior to 3.7p3-bp154.3.3.1. openSUSE Factory was also affected. Instead of fixing the package it was deleted there. |