Filtered by vendor Redhat
Subscriptions
Total
23061 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2024-38618 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 5.3 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: timer: Set lower bound of start tick time Currently ALSA timer doesn't have the lower limit of the start tick time, and it allows a very small size, e.g. 1 tick with 1ns resolution for hrtimer. Such a situation may lead to an unexpected RCU stall, where the callback repeatedly queuing the expire update, as reported by fuzzer. This patch introduces a sanity check of the timer start tick time, so that the system returns an error when a too small start size is set. As of this patch, the lower limit is hard-coded to 100us, which is small enough but can still work somehow. | ||||
| CVE-2024-38580 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: epoll: be better about file lifetimes epoll can call out to vfs_poll() with a file pointer that may race with the last 'fput()'. That would make f_count go down to zero, and while the ep->mtx locking means that the resulting file pointer tear-down will be blocked until the poll returns, it means that f_count is already dead, and any use of it won't actually get a reference to the file any more: it's dead regardless. Make sure we have a valid ref on the file pointer before we call down to vfs_poll() from the epoll routines. | ||||
| CVE-2024-36952 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2026-01-05 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Move NPIV's transport unregistration to after resource clean up There are cases after NPIV deletion where the fabric switch still believes the NPIV is logged into the fabric. This occurs when a vport is unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the fabric. Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including the fabric D_ID, removes the last ndlp reference and frees the ndlp rport object. This sometimes causes the race condition where the final DA_ID and LOGO are skipped from being sent to the fabric switch. Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID and LOGO are sent. | ||||
| CVE-2024-36950 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2026-01-05 | 4.4 Medium |
| In the Linux kernel, the following vulnerability has been resolved: firewire: ohci: mask bus reset interrupts between ISR and bottom half In the FireWire OHCI interrupt handler, if a bus reset interrupt has occurred, mask bus reset interrupts until bus_reset_work has serviced and cleared the interrupt. Normally, we always leave bus reset interrupts masked. We infer the bus reset from the self-ID interrupt that happens shortly thereafter. A scenario where we unmask bus reset interrupts was introduced in 2008 in a007bb857e0b26f5d8b73c2ff90782d9c0972620: If OHCI_PARAM_DEBUG_BUSRESETS (8) is set in the debug parameter bitmask, we will unmask bus reset interrupts so we can log them. irq_handler logs the bus reset interrupt. However, we can't clear the bus reset event flag in irq_handler, because we won't service the event until later. irq_handler exits with the event flag still set. If the corresponding interrupt is still unmasked, the first bus reset will usually freeze the system due to irq_handler being called again each time it exits. This freeze can be reproduced by loading firewire_ohci with "modprobe firewire_ohci debug=-1" (to enable all debugging output). Apparently there are also some cases where bus_reset_work will get called soon enough to clear the event, and operation will continue normally. This freeze was first reported a few months after a007bb85 was committed, but until now it was never fixed. The debug level could safely be set to -1 through sysfs after the module was loaded, but this would be ineffectual in logging bus reset interrupts since they were only unmasked during initialization. irq_handler will now leave the event flag set but mask bus reset interrupts, so irq_handler won't be called again and there will be no freeze. If OHCI_PARAM_DEBUG_BUSRESETS is enabled, bus_reset_work will unmask the interrupt after servicing the event, so future interrupts will be caught as desired. As a side effect to this change, OHCI_PARAM_DEBUG_BUSRESETS can now be enabled through sysfs in addition to during initial module loading. However, when enabled through sysfs, logging of bus reset interrupts will be effective only starting with the second bus reset, after bus_reset_work has executed. | ||||
| CVE-2024-36924 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up() lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the hbalock to avoid potential deadlock. | ||||
| CVE-2024-36922 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: read txq->read_ptr under lock If we read txq->read_ptr without lock, we can read the same value twice, then obtain the lock, and reclaim from there to two different places, but crucially reclaim the same entry twice, resulting in the WARN_ONCE() a little later. Fix that by reading txq->read_ptr under lock. | ||||
| CVE-2024-36919 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 4.4 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: bnx2fc: Remove spin_lock_bh while releasing resources after upload The session resources are used by FW and driver when session is offloaded, once session is uploaded these resources are not used. The lock is not required as these fields won't be used any longer. The offload and upload calls are sequential, hence lock is not required. This will suppress following BUG_ON(): [ 449.843143] ------------[ cut here ]------------ [ 449.848302] kernel BUG at mm/vmalloc.c:2727! [ 449.853072] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 449.858712] CPU: 5 PID: 1996 Comm: kworker/u24:2 Not tainted 5.14.0-118.el9.x86_64 #1 Rebooting. [ 449.867454] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.3.4 11/08/2016 [ 449.876966] Workqueue: fc_rport_eq fc_rport_work [libfc] [ 449.882910] RIP: 0010:vunmap+0x2e/0x30 [ 449.887098] Code: 00 65 8b 05 14 a2 f0 4a a9 00 ff ff 00 75 1b 55 48 89 fd e8 34 36 79 00 48 85 ed 74 0b 48 89 ef 31 f6 5d e9 14 fc ff ff 5d c3 <0f> 0b 0f 1f 44 00 00 41 57 41 56 49 89 ce 41 55 49 89 fd 41 54 41 [ 449.908054] RSP: 0018:ffffb83d878b3d68 EFLAGS: 00010206 [ 449.913887] RAX: 0000000080000201 RBX: ffff8f4355133550 RCX: 000000000d400005 [ 449.921843] RDX: 0000000000000001 RSI: 0000000000001000 RDI: ffffb83da53f5000 [ 449.929808] RBP: ffff8f4ac6675800 R08: ffffb83d878b3d30 R09: 00000000000efbdf [ 449.937774] R10: 0000000000000003 R11: ffff8f434573e000 R12: 0000000000001000 [ 449.945736] R13: 0000000000001000 R14: ffffb83da53f5000 R15: ffff8f43d4ea3ae0 [ 449.953701] FS: 0000000000000000(0000) GS:ffff8f529fc80000(0000) knlGS:0000000000000000 [ 449.962732] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 449.969138] CR2: 00007f8cf993e150 CR3: 0000000efbe10003 CR4: 00000000003706e0 [ 449.977102] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 449.985065] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 449.993028] Call Trace: [ 449.995756] __iommu_dma_free+0x96/0x100 [ 450.000139] bnx2fc_free_session_resc+0x67/0x240 [bnx2fc] [ 450.006171] bnx2fc_upload_session+0xce/0x100 [bnx2fc] [ 450.011910] bnx2fc_rport_event_handler+0x9f/0x240 [bnx2fc] [ 450.018136] fc_rport_work+0x103/0x5b0 [libfc] [ 450.023103] process_one_work+0x1e8/0x3c0 [ 450.027581] worker_thread+0x50/0x3b0 [ 450.031669] ? rescuer_thread+0x370/0x370 [ 450.036143] kthread+0x149/0x170 [ 450.039744] ? set_kthread_struct+0x40/0x40 [ 450.044411] ret_from_fork+0x22/0x30 [ 450.048404] Modules linked in: vfat msdos fat xfs nfs_layout_nfsv41_files rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver dm_service_time qedf qed crc8 bnx2fc libfcoe libfc scsi_transport_fc intel_rapl_msr intel_rapl_common x86_pkg_temp_thermal intel_powerclamp dcdbas rapl intel_cstate intel_uncore mei_me pcspkr mei ipmi_ssif lpc_ich ipmi_si fuse zram ext4 mbcache jbd2 loop nfsv3 nfs_acl nfs lockd grace fscache netfs irdma ice sd_mod t10_pi sg ib_uverbs ib_core 8021q garp mrp stp llc mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt mxm_wmi fb_sys_fops cec crct10dif_pclmul ahci crc32_pclmul bnx2x drm ghash_clmulni_intel libahci rfkill i40e libata megaraid_sas mdio wmi sunrpc lrw dm_crypt dm_round_robin dm_multipath dm_snapshot dm_bufio dm_mirror dm_region_hash dm_log dm_zero dm_mod linear raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx raid6_pq libcrc32c crc32c_intel raid1 raid0 iscsi_ibft squashfs be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls [ 450.048497] libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi edd ipmi_devintf ipmi_msghandler [ 450.159753] ---[ end trace 712de2c57c64abc8 ]--- | ||||
| CVE-2024-35995 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ACPI: CPPC: Use access_width over bit_width for system memory accesses To align with ACPI 6.3+, since bit_width can be any 8-bit value, it cannot be depended on to be always on a clean 8b boundary. This was uncovered on the Cobalt 100 platform. SError Interrupt on CPU26, code 0xbe000011 -- SError CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1 Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION pstate: 62400009 (nZCv daif +PAN -UAO +TCO -DIT -SSBS BTYPE=--) pc : cppc_get_perf_caps+0xec/0x410 lr : cppc_get_perf_caps+0xe8/0x410 sp : ffff8000155ab730 x29: ffff8000155ab730 x28: ffff0080139d0038 x27: ffff0080139d0078 x26: 0000000000000000 x25: ffff0080139d0058 x24: 00000000ffffffff x23: ffff0080139d0298 x22: ffff0080139d0278 x21: 0000000000000000 x20: ffff00802b251910 x19: ffff0080139d0000 x18: ffffffffffffffff x17: 0000000000000000 x16: ffffdc7e111bad04 x15: ffff00802b251008 x14: ffffffffffffffff x13: ffff013f1fd63300 x12: 0000000000000006 x11: ffffdc7e128f4420 x10: 0000000000000000 x9 : ffffdc7e111badec x8 : ffff00802b251980 x7 : 0000000000000000 x6 : ffff0080139d0028 x5 : 0000000000000000 x4 : ffff0080139d0018 x3 : 00000000ffffffff x2 : 0000000000000008 x1 : ffff8000155ab7a0 x0 : 0000000000000000 Kernel panic - not syncing: Asynchronous SError Interrupt CPU: 26 PID: 1510 Comm: systemd-udevd Not tainted 5.15.2.1-13 #1 Hardware name: MICROSOFT CORPORATION, BIOS MICROSOFT CORPORATION Call trace: dump_backtrace+0x0/0x1e0 show_stack+0x24/0x30 dump_stack_lvl+0x8c/0xb8 dump_stack+0x18/0x34 panic+0x16c/0x384 add_taint+0x0/0xc0 arm64_serror_panic+0x7c/0x90 arm64_is_fatal_ras_serror+0x34/0xa4 do_serror+0x50/0x6c el1h_64_error_handler+0x40/0x74 el1h_64_error+0x7c/0x80 cppc_get_perf_caps+0xec/0x410 cppc_cpufreq_cpu_init+0x74/0x400 [cppc_cpufreq] cpufreq_online+0x2dc/0xa30 cpufreq_add_dev+0xc0/0xd4 subsys_interface_register+0x134/0x14c cpufreq_register_driver+0x1b0/0x354 cppc_cpufreq_init+0x1a8/0x1000 [cppc_cpufreq] do_one_initcall+0x50/0x250 do_init_module+0x60/0x27c load_module+0x2300/0x2570 __do_sys_finit_module+0xa8/0x114 __arm64_sys_finit_module+0x2c/0x3c invoke_syscall+0x78/0x100 el0_svc_common.constprop.0+0x180/0x1a0 do_el0_svc+0x84/0xa0 el0_svc+0x2c/0xc0 el0t_64_sync_handler+0xa4/0x12c el0t_64_sync+0x1a4/0x1a8 Instead, use access_width to determine the size and use the offset and width to shift and mask the bits to read/write out. Make sure to add a check for system memory since pcc redefines the access_width to subspace id. If access_width is not set, then fall back to using bit_width. [ rjw: Subject and changelog edits, comment adjustments ] | ||||
| CVE-2024-35950 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/client: Fully protect modes[] with dev->mode_config.mutex The modes[] array contains pointers to modes on the connectors' mode lists, which are protected by dev->mode_config.mutex. Thus we need to extend modes[] the same protection or by the time we use it the elements may already be pointing to freed/reused memory. | ||||
| CVE-2024-35947 | 4 Debian, Fedoraproject, Linux and 1 more | 5 Debian Linux, Fedora, Linux Kernel and 2 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: dyndbg: fix old BUG_ON in >control parser Fix a BUG_ON from 2009. Even if it looks "unreachable" (I didn't really look), lets make sure by removing it, doing pr_err and return -EINVAL instead. | ||||
| CVE-2024-35944 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: VMCI: Fix memcpy() run-time warning in dg_dispatch_as_host() Syzkaller hit 'WARNING in dg_dispatch_as_host' bug. memcpy: detected field-spanning write (size 56) of single field "&dg_info->msg" at drivers/misc/vmw_vmci/vmci_datagram.c:237 (size 24) WARNING: CPU: 0 PID: 1555 at drivers/misc/vmw_vmci/vmci_datagram.c:237 dg_dispatch_as_host+0x88e/0xa60 drivers/misc/vmw_vmci/vmci_datagram.c:237 Some code commentry, based on my understanding: 544 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size) /// This is 24 + payload_size memcpy(&dg_info->msg, dg, dg_size); Destination = dg_info->msg ---> this is a 24 byte structure(struct vmci_datagram) Source = dg --> this is a 24 byte structure (struct vmci_datagram) Size = dg_size = 24 + payload_size {payload_size = 56-24 =32} -- Syzkaller managed to set payload_size to 32. 35 struct delayed_datagram_info { 36 struct datagram_entry *entry; 37 struct work_struct work; 38 bool in_dg_host_queue; 39 /* msg and msg_payload must be together. */ 40 struct vmci_datagram msg; 41 u8 msg_payload[]; 42 }; So those extra bytes of payload are copied into msg_payload[], a run time warning is seen while fuzzing with Syzkaller. One possible way to fix the warning is to split the memcpy() into two parts -- one -- direct assignment of msg and second taking care of payload. Gustavo quoted: "Under FORTIFY_SOURCE we should not copy data across multiple members in a structure." | ||||
| CVE-2024-35939 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2026-01-05 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: dma-direct: Leak pages on dma_set_decrypted() failure On TDX it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. DMA could free decrypted/shared pages if dma_set_decrypted() fails. This should be a rare case. Just leak the pages in this case instead of freeing them. | ||||
| CVE-2024-35934 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: reduce rtnl pressure in smc_pnet_create_pnetids_list() Many syzbot reports show extreme rtnl pressure, and many of them hint that smc acquires rtnl in netns creation for no good reason [1] This patch returns early from smc_pnet_net_init() if there is no netdevice yet. I am not even sure why smc_pnet_create_pnetids_list() even exists, because smc_pnet_netdev_event() is also calling smc_pnet_add_base_pnetid() when handling NETDEV_UP event. [1] extract of typical syzbot reports 2 locks held by syz-executor.3/12252: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12253: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12257: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12261: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.0/12265: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.3/12268: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.4/12271: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.1/12274: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 2 locks held by syz-executor.2/12280: #0: ffffffff8f369610 (pernet_ops_rwsem){++++}-{3:3}, at: copy_net_ns+0x4c7/0x7b0 net/core/net_namespace.c:491 #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_create_pnetids_list net/smc/smc_pnet.c:809 [inline] #1: ffffffff8f375b88 (rtnl_mutex){+.+.}-{3:3}, at: smc_pnet_net_init+0x10a/0x1e0 net/smc/smc_pnet.c:878 | ||||
| CVE-2024-35925 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: block: prevent division by zero in blk_rq_stat_sum() The expression dst->nr_samples + src->nr_samples may have zero value on overflow. It is necessary to add a check to avoid division by zero. Found by Linux Verification Center (linuxtesting.org) with Svace. | ||||
| CVE-2024-35878 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 5.3 Medium |
| In the Linux kernel, the following vulnerability has been resolved: of: module: prevent NULL pointer dereference in vsnprintf() In of_modalias(), we can get passed the str and len parameters which would cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr when the length is also 0. Also, we need to filter out the negative values of the len parameter as these will result in a really huge buffer since snprintf() takes size_t parameter while ours is ssize_t... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool. | ||||
| CVE-2024-35875 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2026-01-05 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/coco: Require seeding RNG with RDRAND on CoCo systems There are few uses of CoCo that don't rely on working cryptography and hence a working RNG. Unfortunately, the CoCo threat model means that the VM host cannot be trusted and may actively work against guests to extract secrets or manipulate computation. Since a malicious host can modify or observe nearly all inputs to guests, the only remaining source of entropy for CoCo guests is RDRAND. If RDRAND is broken -- due to CPU hardware fault -- the RNG as a whole is meant to gracefully continue on gathering entropy from other sources, but since there aren't other sources on CoCo, this is catastrophic. This is mostly a concern at boot time when initially seeding the RNG, as after that the consequences of a broken RDRAND are much more theoretical. So, try at boot to seed the RNG using 256 bits of RDRAND output. If this fails, panic(). This will also trigger if the system is booted without RDRAND, as RDRAND is essential for a safe CoCo boot. Add this deliberately to be "just a CoCo x86 driver feature" and not part of the RNG itself. Many device drivers and platforms have some desire to contribute something to the RNG, and add_device_randomness() is specifically meant for this purpose. Any driver can call it with seed data of any quality, or even garbage quality, and it can only possibly make the quality of the RNG better or have no effect, but can never make it worse. Rather than trying to build something into the core of the RNG, consider the particular CoCo issue just a CoCo issue, and therefore separate it all out into driver (well, arch/platform) code. [ bp: Massage commit message. ] | ||||
| CVE-2024-35870 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2026-01-05 | 4.4 Medium |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix UAF in smb2_reconnect_server() The UAF bug is due to smb2_reconnect_server() accessing a session that is already being teared down by another thread that is executing __cifs_put_smb_ses(). This can happen when (a) the client has connection to the server but no session or (b) another thread ends up setting @ses->ses_status again to something different than SES_EXITING. To fix this, we need to make sure to unconditionally set @ses->ses_status to SES_EXITING and prevent any other threads from setting a new status while we're still tearing it down. The following can be reproduced by adding some delay to right after the ipc is freed in __cifs_put_smb_ses() - which will give smb2_reconnect_server() worker a chance to run and then accessing @ses->ipc: kinit ... mount.cifs //srv/share /mnt/1 -o sec=krb5,nohandlecache,echo_interval=10 [disconnect srv] ls /mnt/1 &>/dev/null sleep 30 kdestroy [reconnect srv] sleep 10 umount /mnt/1 ... CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 CIFS: VFS: Verify user has a krb5 ticket and keyutils is installed CIFS: VFS: \\srv Send error in SessSetup = -126 general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 50 Comm: kworker/3:1 Not tainted 6.9.0-rc2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014 Workqueue: cifsiod smb2_reconnect_server [cifs] RIP: 0010:__list_del_entry_valid_or_report+0x33/0xf0 Code: 4f 08 48 85 d2 74 42 48 85 c9 74 59 48 b8 00 01 00 00 00 00 ad de 48 39 c2 74 61 48 b8 22 01 00 00 00 00 74 69 <48> 8b 01 48 39 f8 75 7b 48 8b 72 08 48 39 c6 0f 85 88 00 00 00 b8 RSP: 0018:ffffc900001bfd70 EFLAGS: 00010a83 RAX: dead000000000122 RBX: ffff88810da53838 RCX: 6b6b6b6b6b6b6b6b RDX: 6b6b6b6b6b6b6b6b RSI: ffffffffc02f6878 RDI: ffff88810da53800 RBP: ffff88810da53800 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff88810c064000 R13: 0000000000000001 R14: ffff88810c064000 R15: ffff8881039cc000 FS: 0000000000000000(0000) GS:ffff888157c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe3728b1000 CR3: 000000010caa4000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x36/0x90 ? exc_general_protection+0x1c1/0x3f0 ? asm_exc_general_protection+0x26/0x30 ? __list_del_entry_valid_or_report+0x33/0xf0 __cifs_put_smb_ses+0x1ae/0x500 [cifs] smb2_reconnect_server+0x4ed/0x710 [cifs] process_one_work+0x205/0x6b0 worker_thread+0x191/0x360 ? __pfx_worker_thread+0x10/0x10 kthread+0xe2/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> | ||||
| CVE-2024-35869 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2026-01-05 | 8.4 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: guarantee refcounted children from parent session Avoid potential use-after-free bugs when walking DFS referrals, mounting and performing DFS failover by ensuring that all children from parent @tcon->ses are also refcounted. They're all needed across the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at it, too. | ||||
| CVE-2024-35867 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2026-01-05 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_stats_proc_show() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF. | ||||
| CVE-2024-35866 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2026-01-05 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF. | ||||