Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16209 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-50782 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix bug_on in __es_tree_search caused by bad quota inode We got a issue as fllows: ================================================================== kernel BUG at fs/ext4/extents_status.c:202! invalid opcode: 0000 [#1] PREEMPT SMP CPU: 1 PID: 810 Comm: mount Not tainted 6.1.0-rc1-next-g9631525255e3 #352 RIP: 0010:__es_tree_search.isra.0+0xb8/0xe0 RSP: 0018:ffffc90001227900 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000077512a0f RCX: 0000000000000000 RDX: 0000000000000002 RSI: 0000000000002a10 RDI: ffff8881004cd0c8 RBP: ffff888177512ac8 R08: 47ffffffffffffff R09: 0000000000000001 R10: 0000000000000001 R11: 00000000000679af R12: 0000000000002a10 R13: ffff888177512d88 R14: 0000000077512a10 R15: 0000000000000000 FS: 00007f4bd76dbc40(0000)GS:ffff88842fd00000(0000)knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005653bf993cf8 CR3: 000000017bfdf000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ext4_es_cache_extent+0xe2/0x210 ext4_cache_extents+0xd2/0x110 ext4_find_extent+0x5d5/0x8c0 ext4_ext_map_blocks+0x9c/0x1d30 ext4_map_blocks+0x431/0xa50 ext4_getblk+0x82/0x340 ext4_bread+0x14/0x110 ext4_quota_read+0xf0/0x180 v2_read_header+0x24/0x90 v2_check_quota_file+0x2f/0xa0 dquot_load_quota_sb+0x26c/0x760 dquot_load_quota_inode+0xa5/0x190 ext4_enable_quotas+0x14c/0x300 __ext4_fill_super+0x31cc/0x32c0 ext4_fill_super+0x115/0x2d0 get_tree_bdev+0x1d2/0x360 ext4_get_tree+0x19/0x30 vfs_get_tree+0x26/0xe0 path_mount+0x81d/0xfc0 do_mount+0x8d/0xc0 __x64_sys_mount+0xc0/0x160 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> ================================================================== Above issue may happen as follows: ------------------------------------- ext4_fill_super ext4_orphan_cleanup ext4_enable_quotas ext4_quota_enable ext4_iget --> get error inode <5> ext4_ext_check_inode --> Wrong imode makes it escape inspection make_bad_inode(inode) --> EXT4_BOOT_LOADER_INO set imode dquot_load_quota_inode vfs_setup_quota_inode --> check pass dquot_load_quota_sb v2_check_quota_file v2_read_header ext4_quota_read ext4_bread ext4_getblk ext4_map_blocks ext4_ext_map_blocks ext4_find_extent ext4_cache_extents ext4_es_cache_extent __es_tree_search.isra.0 ext4_es_end --> Wrong extents trigger BUG_ON In the above issue, s_usr_quota_inum is set to 5, but inode<5> contains incorrect imode and disordered extents. Because 5 is EXT4_BOOT_LOADER_INO, the ext4_ext_check_inode check in the ext4_iget function can be bypassed, finally, the extents that are not checked trigger the BUG_ON in the __es_tree_search function. To solve this issue, check whether the inode is bad_inode in vfs_setup_quota_inode().
CVE-2023-54115 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: pcmcia: rsrc_nonstatic: Fix memory leak in nonstatic_release_resource_db() When nonstatic_release_resource_db() frees all resources associated with an PCMCIA socket, it forgets to free socket_data too, causing a memory leak observable with kmemleak: unreferenced object 0xc28d1000 (size 64): comm "systemd-udevd", pid 297, jiffies 4294898478 (age 194.484s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 f0 85 0e c3 00 00 00 00 ................ 00 00 00 00 0c 10 8d c2 00 00 00 00 00 00 00 00 ................ backtrace: [<ffda4245>] __kmem_cache_alloc_node+0x2d7/0x4a0 [<7e51f0c8>] kmalloc_trace+0x31/0xa4 [<d52b4ca0>] nonstatic_init+0x24/0x1a4 [pcmcia_rsrc] [<a2f13e08>] pcmcia_register_socket+0x200/0x35c [pcmcia_core] [<a728be1b>] yenta_probe+0x4d8/0xa70 [yenta_socket] [<c48fac39>] pci_device_probe+0x99/0x194 [<84b7c690>] really_probe+0x181/0x45c [<8060fe6e>] __driver_probe_device+0x75/0x1f4 [<b9b76f43>] driver_probe_device+0x28/0xac [<648b766f>] __driver_attach+0xeb/0x1e4 [<6e9659eb>] bus_for_each_dev+0x61/0xb4 [<25a669f3>] driver_attach+0x1e/0x28 [<d8671d6b>] bus_add_driver+0x102/0x20c [<df0d323c>] driver_register+0x5b/0x120 [<942cd8a4>] __pci_register_driver+0x44/0x4c [<e536027e>] __UNIQUE_ID___addressable_cleanup_module188+0x1c/0xfffff000 [iTCO_vendor_support] Fix this by freeing socket_data too. Tested on a Acer Travelmate 4002WLMi by manually binding/unbinding the yenta_cardbus driver (yenta_socket).
CVE-2023-54059 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: soc: mediatek: mtk-svs: Enable the IRQ later If the system does not come from reset (like when is booted via kexec()), the peripheral might triger an IRQ before the data structures are initialised. [ 0.227710] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000f08 [ 0.227913] Call trace: [ 0.227918] svs_isr+0x8c/0x538
CVE-2022-50729 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: Fix resource leak in ksmbd_session_rpc_open() When ksmbd_rpc_open() fails then it must call ksmbd_rpc_id_free() to undo the result of ksmbd_ipc_id_alloc().
CVE-2023-54086 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Add preempt_count_{sub,add} into btf id deny list The recursion check in __bpf_prog_enter* and __bpf_prog_exit* leave preempt_count_{sub,add} unprotected. When attaching trampoline to them we get panic as follows, [ 867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28) [ 867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI [ 867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4 [ 867.843100] Call Trace: [ 867.843101] <TASK> [ 867.843104] asm_exc_int3+0x3a/0x40 [ 867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0 [ 867.843135] __bpf_prog_enter_recur+0x17/0x90 [ 867.843148] bpf_trampoline_6442468108_0+0x2e/0x1000 [ 867.843154] ? preempt_count_sub+0x1/0xa0 [ 867.843157] preempt_count_sub+0x5/0xa0 [ 867.843159] ? migrate_enable+0xac/0xf0 [ 867.843164] __bpf_prog_exit_recur+0x2d/0x40 [ 867.843168] bpf_trampoline_6442468108_0+0x55/0x1000 ... [ 867.843788] preempt_count_sub+0x5/0xa0 [ 867.843793] ? migrate_enable+0xac/0xf0 [ 867.843829] __bpf_prog_exit_recur+0x2d/0x40 [ 867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35) [ 867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c) [ 867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec) [ 867.843842] bpf_trampoline_6442468108_0+0x55/0x1000 ... That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are called after prog->active is decreased. Fixing this by adding these two functions into btf ids deny list.
CVE-2023-54056 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kheaders: Use array declaration instead of char Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination and source buffers. Defining kernel_headers_data as "char" would trip this check. Since these addresses are treated as byte arrays, define them as arrays (as done everywhere else). This was seen with: $ cat /sys/kernel/kheaders.tar.xz >> /dev/null detected buffer overflow in memcpy kernel BUG at lib/string_helpers.c:1027! ... RIP: 0010:fortify_panic+0xf/0x20 [...] Call Trace: <TASK> ikheaders_read+0x45/0x50 [kheaders] kernfs_fop_read_iter+0x1a4/0x2f0 ...
CVE-2023-54076 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix missed ses refcounting Use new cifs_smb_ses_inc_refcount() helper to get an active reference of @ses and @ses->dfs_root_ses (if set). This will prevent @ses->dfs_root_ses of being put in the next call to cifs_put_smb_ses() and thus potentially causing an use-after-free bug.
CVE-2023-54099 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: Protect reconfiguration of sb read-write from racing writes The reconfigure / remount code takes a lot of effort to protect filesystem's reconfiguration code from racing writes on remounting read-only. However during remounting read-only filesystem to read-write mode userspace writes can start immediately once we clear SB_RDONLY flag. This is inconvenient for example for ext4 because we need to do some writes to the filesystem (such as preparation of quota files) before we can take userspace writes so we are clearing SB_RDONLY flag before we are fully ready to accept userpace writes and syzbot has found a way to exploit this [1]. Also as far as I'm reading the code the filesystem remount code was protected from racing writes in the legacy mount path by the mount's MNT_READONLY flag so this is relatively new problem. It is actually fairly easy to protect remount read-write from racing writes using sb->s_readonly_remount flag so let's just do that instead of having to workaround these races in the filesystem code. [1] https://lore.kernel.org/all/[email protected]/T/
CVE-2025-68362 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: rtl8187: Fix potential buffer underflow in rtl8187_rx_cb() The rtl8187_rx_cb() calculates the rx descriptor header address by subtracting its size from the skb tail pointer. However, it does not validate if the received packet (skb->len from urb->actual_length) is large enough to contain this header. If a truncated packet is received, this will lead to a buffer underflow, reading memory before the start of the skb data area, and causing a kernel panic. Add length checks for both rtl8187 and rtl8187b descriptor headers before attempting to access them, dropping the packet cleanly if the check fails.
CVE-2025-68369 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2022-50722 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: ipu3-imgu: Fix NULL pointer dereference in active selection access What the IMGU driver did was that it first acquired the pointers to active and try V4L2 subdev state, and only then figured out which one to use. The problem with that approach and a later patch (see Fixes: tag) is that as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is now an attempt to dereference that. Fix this. Also rewrap lines a little.
CVE-2022-50725 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init() KASAN reports a use-after-free: BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] Call Trace: ... dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge] platform_probe+0xb6/0x170 ... Allocated by task 1238: ... dvb_register_device+0x1a7/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... Freed by task 1238: dvb_register_device+0x6d2/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... It is because the error handling in vidtv_bridge_dvb_init() is wrong. First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but goto fail_dmx(_dev): calls release functions again, which causes use-after-free. Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause out-of-bound when i finished its loop (i == NUM_FE). And the loop releasing is wrong, although now NUM_FE is 1 so it won't cause problem. Fix this by correctly releasing everything.
CVE-2023-54107 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: dropping parent refcount after pd_free_fn() is done Some cgroup policies will access parent pd through child pd even after pd_offline_fn() is done. If pd_free_fn() for parent is called before child, then UAF can be triggered. Hence it's better to guarantee the order of pd_free_fn(). Currently refcount of parent blkg is dropped in __blkg_release(), which is before pd_free_fn() is called in blkg_free_work_fn() while blkg_free_work_fn() is called asynchronously. This patch make sure pd_free_fn() called from removing cgroup is ordered by delaying dropping parent refcount after calling pd_free_fn() for child. BTW, pd_free_fn() will also be called from blkcg_deactivate_policy() from deleting device, and following patches will guarantee the order.
CVE-2022-50714 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix rmmod crash in driver reload test In insmod/rmmod stress test, the following crash dump shows up immediately. The problem is caused by missing mt76_dev in mt7921_pci_remove(). We should make sure the drvdata is ready before probe() finished. [168.862789] ================================================================== [168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480 [168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361 [168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1 [168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020 [168.862820] Call Trace: [168.862822] <TASK> [168.862825] dump_stack_lvl+0x49/0x63 [168.862832] print_report.cold+0x493/0x6b7 [168.862845] kasan_report+0xa7/0x120 [168.862857] kasan_check_range+0x163/0x200 [168.862861] __kasan_check_write+0x14/0x20 [168.862866] try_to_grab_pending+0x59/0x480 [168.862870] __cancel_work_timer+0xbb/0x340 [168.862898] cancel_work_sync+0x10/0x20 [168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e] [168.862909] pci_device_remove+0xa3/0x1d0 [168.862914] device_remove+0xc4/0x170 [168.862920] device_release_driver_internal+0x163/0x300 [168.862925] driver_detach+0xc7/0x1a0 [168.862930] bus_remove_driver+0xeb/0x2d0 [168.862935] driver_unregister+0x71/0xb0 [168.862939] pci_unregister_driver+0x30/0x230 [168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e] [168.862949] __x64_sys_delete_module+0x2f9/0x4b0 [168.862968] do_syscall_64+0x38/0x90 [168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd Test steps: 1. insmode 2. do not ifup 3. rmmod quickly (within 1 second)
CVE-2022-50712 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: devlink: hold region lock when flushing snapshots Netdevsim triggers a splat on reload, when it destroys regions with snapshots pending: WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140 CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580 RIP: 0010:devlink_region_snapshot_del+0x12e/0x140 Call Trace: <TASK> devl_region_destroy+0x70/0x140 nsim_dev_reload_down+0x2f/0x60 [netdevsim] devlink_reload+0x1f7/0x360 devlink_nl_cmd_reload+0x6ce/0x860 genl_family_rcv_msg_doit.isra.0+0x145/0x1c0 This is the locking assert in devlink_region_snapshot_del(), we're supposed to be holding the region->snapshot_lock here.
CVE-2022-50720 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/apic: Don't disable x2APIC if locked The APIC supports two modes, legacy APIC (or xAPIC), and Extended APIC (or x2APIC). X2APIC mode is mostly compatible with legacy APIC, but it disables the memory-mapped APIC interface in favor of one that uses MSRs. The APIC mode is controlled by the EXT bit in the APIC MSR. The MMIO/xAPIC interface has some problems, most notably the APIC LEAK [1]. This bug allows an attacker to use the APIC MMIO interface to extract data from the SGX enclave. Introduce support for a new feature that will allow the BIOS to lock the APIC in x2APIC mode. If the APIC is locked in x2APIC mode and the kernel tries to disable the APIC or revert to legacy APIC mode a GP fault will occur. Introduce support for a new MSR (IA32_XAPIC_DISABLE_STATUS) and handle the new locked mode when the LEGACY_XAPIC_DISABLED bit is set by preventing the kernel from trying to disable the x2APIC. On platforms with the IA32_XAPIC_DISABLE_STATUS MSR, if SGX or TDX are enabled the LEGACY_XAPIC_DISABLED will be set by the BIOS. If legacy APIC is required, then it SGX and TDX need to be disabled in the BIOS. [1]: https://aepicleak.com/aepicleak.pdf
CVE-2023-54043 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Do not add the same hwpt to the ioas->hwpt_list twice The hwpt is added to the hwpt_list only during its creation, it is never added again. This hunk is some missed leftover from rework. Adding it twice will corrupt the linked list in some cases. It effects HWPT specific attachment, which is something the test suite cannot cover until we can create a legitimate struct device with a non-system iommu "driver" (ie we need the bus removed from the iommu code)
CVE-2022-50721 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg The calling convention for pre_slave_sg is to return NULL on error and provide an error log to the system. Qcom-adm instead provide error pointer when an error occur. This indirectly cause kernel panic for example for the nandc driver that checks only if the pointer returned by device_prep_slave_sg is not NULL. Returning an error pointer makes nandc think the device_prep_slave_sg function correctly completed and makes the kernel panics later in the code. While nandc is the one that makes the kernel crash, it was pointed out that the real problem is qcom-adm not following calling convention for that function. To fix this, drop returning error pointer and return NULL with an error log.
CVE-2022-50726 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix possible use-after-free in async command interface mlx5_cmd_cleanup_async_ctx should return only after all its callback handlers were completed. Before this patch, the below race between mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and lead to a use-after-free: 1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e. elevated by 1, a single inflight callback). 2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1. 3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and is about to call wake_up(). 4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns immediately as the condition (num_inflight == 0) holds. 5. mlx5_cmd_cleanup_async_ctx returns. 6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx object. 7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed object. Fix it by syncing using a completion object. Mark it completed when num_inflight reaches 0. Trace: BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270 Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0 CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x57/0x7d print_report.cold+0x2d5/0x684 ? do_raw_spin_lock+0x23d/0x270 kasan_report+0xb1/0x1a0 ? do_raw_spin_lock+0x23d/0x270 do_raw_spin_lock+0x23d/0x270 ? rwlock_bug.part.0+0x90/0x90 ? __delete_object+0xb8/0x100 ? lock_downgrade+0x6e0/0x6e0 _raw_spin_lock_irqsave+0x43/0x60 ? __wake_up_common_lock+0xb9/0x140 __wake_up_common_lock+0xb9/0x140 ? __wake_up_common+0x650/0x650 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kasan_set_track+0x21/0x30 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kfree+0x1ba/0x520 ? do_raw_spin_unlock+0x54/0x220 mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core] ? dump_command+0xcc0/0xcc0 [mlx5_core] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? cmd_comp_notifier+0x7e/0xb0 [mlx5_core] cmd_comp_notifier+0x7e/0xb0 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 ? irq_release+0x140/0x140 [mlx5_core] irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x1f2/0x620 handle_irq_event+0xb2/0x1d0 handle_edge_irq+0x21e/0xb00 __common_interrupt+0x79/0x1a0 common_interrupt+0x78/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 RIP: 0010:default_idle+0x42/0x60 Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00 RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242 RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110 RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3 R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005 R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000 ? default_idle_call+0xcc/0x450 default_idle_call+0xec/0x450 do_idle+0x394/0x450 ? arch_cpu_idle_exit+0x40/0x40 ? do_idle+0x17/0x450 cpu_startup_entry+0x19/0x20 start_secondary+0x221/0x2b0 ? set_cpu_sibling_map+0x2070/0x2070 secondary_startup_64_no_verify+0xcd/0xdb </TASK> Allocated by task 49502: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 kvmalloc_node+0x48/0xe0 mlx5e_bulk_async_init+0x35/0x110 [mlx5_core] mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core] mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core] mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core] mlx5e_detach_netdev+0x1c ---truncated---
CVE-2022-50781 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: amdgpu/pm: prevent array underflow in vega20_odn_edit_dpm_table() In the PP_OD_EDIT_VDDC_CURVE case the "input_index" variable is capped at 2 but not checked for negative values so it results in an out of bounds read. This value comes from the user via sysfs.