Filtered by CWE-787
Total 13243 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-65001 1 Fujitsu 1 Fbiosdrv 2025-11-14 8.2 High
Fujitsu fbiosdrv.sys before 2.5.0.0 allows an attacker to potentially affect system confidentiality, integrity, and availability.
CVE-2022-49999 1 Linux 1 Linux Kernel 2025-11-14 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix space cache corruption and potential double allocations When testing space_cache v2 on a large set of machines, we encountered a few symptoms: 1. "unable to add free space :-17" (EEXIST) errors. 2. Missing free space info items, sometimes caught with a "missing free space info for X" error. 3. Double-accounted space: ranges that were allocated in the extent tree and also marked as free in the free space tree, ranges that were marked as allocated twice in the extent tree, or ranges that were marked as free twice in the free space tree. If the latter made it onto disk, the next reboot would hit the BUG_ON() in add_new_free_space(). 4. On some hosts with no on-disk corruption or error messages, the in-memory space cache (dumped with drgn) disagreed with the free space tree. All of these symptoms have the same underlying cause: a race between caching the free space for a block group and returning free space to the in-memory space cache for pinned extents causes us to double-add a free range to the space cache. This race exists when free space is cached from the free space tree (space_cache=v2) or the extent tree (nospace_cache, or space_cache=v1 if the cache needs to be regenerated). struct btrfs_block_group::last_byte_to_unpin and struct btrfs_block_group::progress are supposed to protect against this race, but commit d0c2f4fa555e ("btrfs: make concurrent fsyncs wait less when waiting for a transaction commit") subtly broke this by allowing multiple transactions to be unpinning extents at the same time. Specifically, the race is as follows: 1. An extent is deleted from an uncached block group in transaction A. 2. btrfs_commit_transaction() is called for transaction A. 3. btrfs_run_delayed_refs() -> __btrfs_free_extent() runs the delayed ref for the deleted extent. 4. __btrfs_free_extent() -> do_free_extent_accounting() -> add_to_free_space_tree() adds the deleted extent back to the free space tree. 5. do_free_extent_accounting() -> btrfs_update_block_group() -> btrfs_cache_block_group() queues up the block group to get cached. block_group->progress is set to block_group->start. 6. btrfs_commit_transaction() for transaction A calls switch_commit_roots(). It sets block_group->last_byte_to_unpin to block_group->progress, which is block_group->start because the block group hasn't been cached yet. 7. The caching thread gets to our block group. Since the commit roots were already switched, load_free_space_tree() sees the deleted extent as free and adds it to the space cache. It finishes caching and sets block_group->progress to U64_MAX. 8. btrfs_commit_transaction() advances transaction A to TRANS_STATE_SUPER_COMMITTED. 9. fsync calls btrfs_commit_transaction() for transaction B. Since transaction A is already in TRANS_STATE_SUPER_COMMITTED and the commit is for fsync, it advances. 10. btrfs_commit_transaction() for transaction B calls switch_commit_roots(). This time, the block group has already been cached, so it sets block_group->last_byte_to_unpin to U64_MAX. 11. btrfs_commit_transaction() for transaction A calls btrfs_finish_extent_commit(), which calls unpin_extent_range() for the deleted extent. It sees last_byte_to_unpin set to U64_MAX (by transaction B!), so it adds the deleted extent to the space cache again! This explains all of our symptoms above: * If the sequence of events is exactly as described above, when the free space is re-added in step 11, it will fail with EEXIST. * If another thread reallocates the deleted extent in between steps 7 and 11, then step 11 will silently re-add that space to the space cache as free even though it is actually allocated. Then, if that space is allocated *again*, the free space tree will be corrupted (namely, the wrong item will be deleted). * If we don't catch this free space tree corr ---truncated---
CVE-2025-64503 1 Openprinting 1 Libcupsfilters 2025-11-14 4 Medium
cups-filters contains backends, filters, and other software required to get the cups printing service working on operating systems other than macos. In cups-filters prior to 1.28.18, by crafting a PDF file with a large `MediaBox` value, an attacker can cause CUPS-Filter 1.x’s `pdftoraster` tool to write beyond the bounds of an array. First, a PDF with a large `MediaBox` width value causes `header.cupsWidth` to become large. Next, the calculation of `bytesPerLine = (header.cupsBitsPerPixel * header.cupsWidth + 7) / 8` overflows, resulting in a small value. Then, `lineBuf` is allocated with the small `bytesPerLine` size. Finally, `convertLineChunked` calls `writePixel8`, which attempts to write to `lineBuf` outside of its buffer size (out of bounds write). In libcupsfilters, the maintainers found the same `bytesPerLine` multiplication without overflow check, but the provided test case does not cause an overflow there, because the values are different. Commit 50d94ca0f2fa6177613c97c59791bde568631865 contains a patch, which is incorporated into cups-filters version 1.28.18.
CVE-2025-33029 2 Intel, Microsoft 4 Proset, Proset/wireless, Proset/wireless Software and 1 more 2025-11-14 7.4 High
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
CVE-2025-35971 2 Intel, Microsoft 4 Proset, Proset/wireless, Proset/wireless Software and 1 more 2025-11-14 8.2 High
Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts.
CVE-2025-61838 1 Adobe 1 Format Plugins 2025-11-14 7.8 High
Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2025-61837 1 Adobe 1 Format Plugins 2025-11-14 7.8 High
Format Plugins versions 1.1.1 and earlier are affected by a Heap-based Buffer Overflow vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2023-4273 5 Debian, Fedoraproject, Linux and 2 more 12 Debian Linux, Fedora, Linux Kernel and 9 more 2025-11-14 6 Medium
A flaw was found in the exFAT driver of the Linux kernel. The vulnerability exists in the implementation of the file name reconstruction function, which is responsible for reading file name entries from a directory index and merging file name parts belonging to one file into a single long file name. Since the file name characters are copied into a stack variable, a local privileged attacker could use this flaw to overflow the kernel stack.
CVE-2025-24201 3 Apple, Debian, Redhat 13 Ipados, Iphone Os, Macos and 10 more 2025-11-14 10 Critical
An out-of-bounds write issue was addressed with improved checks to prevent unauthorized actions. This issue is fixed in visionOS 2.3.2, iOS 18.3.2 and iPadOS 18.3.2, macOS Sequoia 15.3.2, Safari 18.3.1, watchOS 11.4, iPadOS 17.7.6, iOS 16.7.11 and iPadOS 16.7.11, iOS 15.8.4 and iPadOS 15.8.4. Maliciously crafted web content may be able to break out of Web Content sandbox. This is a supplementary fix for an attack that was blocked in iOS 17.2. (Apple is aware of a report that this issue may have been exploited in an extremely sophisticated attack against specific targeted individuals on versions of iOS before iOS 17.2.).
CVE-2024-45782 2 Gnu, Redhat 4 Grub2, Enterprise Linux, Openshift and 1 more 2025-11-14 7.8 High
A flaw was found in the HFS filesystem. When reading an HFS volume's name at grub_fs_mount(), the HFS filesystem driver performs a strcpy() using the user-provided volume name as input without properly validating the volume name's length. This issue may read to a heap-based out-of-bounds writer, impacting grub's sensitive data integrity and eventually leading to a secure boot protection bypass.
CVE-2024-45780 1 Redhat 2 Enterprise Linux, Openshift 2025-11-14 6.7 Medium
A flaw was found in grub2. When reading tar files, grub2 allocates an internal buffer for the file name. However, it fails to properly verify the allocation against possible integer overflows. It's possible to cause the allocation length to overflow with a crafted tar file, leading to a heap out-of-bounds write. This flaw eventually allows an attacker to circumvent secure boot protections.
CVE-2024-37000 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted X_B file, when parsed in pskernel.DLL through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process.
CVE-2024-23157 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted SLDASM or SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process.
CVE-2024-23150 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted PRT file, when parsed in odxug_dll.dll through Autodesk AutoCAD, may force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process.
CVE-2024-23148 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted CATPRODUCT file, when parsed in CC5Dll.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process.
CVE-2024-23147 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted CATPART, X_B and STEP, when parsed in ASMKERN228A.dll and ASMKERN229A.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process.
CVE-2024-23146 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted X_B and X_T file, when parsed in pskernel.DLL through through Autodesk AutoCAD, may force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process.
CVE-2024-37003 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted DWG and SLDPRT file, when parsed in opennurbs.dll and ODXSW_DLL.dll through Autodesk applications, can be used to cause a Stack-based Overflow. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process.
CVE-2024-36999 1 Autodesk 10 Advance Steel, Autocad, Autocad Architecture and 7 more 2025-11-13 7.8 High
A maliciously crafted 3DM file, when parsed in opennurbs.dll through Autodesk applications, can force an Out-of-Bounds Write. A malicious actor can leverage this vulnerability to cause a crash, write sensitive data, or execute arbitrary code in the context of the current process.
CVE-2024-23154 1 Autodesk 11 Advance Steel, Autocad, Autocad Architecture and 8 more 2025-11-13 7.8 High
A maliciously crafted SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can be used to cause a Heap-based Overflow. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process.