Total
                    1340 CVE
                
            | CVE | Vendors | Products | Updated | CVSS v3.1 | 
|---|---|---|---|---|
| CVE-2022-49521 | 1 Linux | 1 Linux Kernel | 2025-10-21 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix resource leak in lpfc_sli4_send_seq_to_ulp() If no handler is found in lpfc_complete_unsol_iocb() to match the rctl of a received frame, the frame is dropped and resources are leaked. Fix by returning resources when discarding an unhandled frame type. Update lpfc_fc_frame_check() handling of NOP basic link service. | ||||
| CVE-2022-49539 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-21 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: rtw89: ser: fix CAM leaks occurring in L2 reset The CAM, meaning address CAM and bssid CAM here, will get leaks during SER (system error recover) L2 reset process and ieee80211_restart_hw() which is called by L2 reset process eventually. The normal flow would be like -> add interface (acquire 1) -> enter ips (release 1) -> leave ips (acquire 1) -> connection (occupy 1) <(A) 1 leak after L2 reset if non-sec connection> The ieee80211_restart_hw() flow (under connection) -> ieee80211 reconfig -> add interface (acquire 1) -> leave ips (acquire 1) -> connection (occupy (A) + 2) <(B) 1 more leak> Originally, CAM is released before HW restart only if connection is under security. Now, release CAM whatever connection it is to fix leak in (A). OTOH, check if CAM is already valid to avoid acquiring multiple times to fix (B). Besides, if AP mode, release address CAM of all stations before HW restart. | ||||
| CVE-2025-21091 | 1 F5 | 22 Big-ip, Big-ip Access Policy Manager, Big-ip Advanced Firewall Manager and 19 more | 2025-10-21 | 7.5 High | 
| When SNMP v1 or v2c are disabled on the BIG-IP, undisclosed requests can cause an increase in memory resource utilization. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated | ||||
| CVE-2025-25057 | 1 Openatom | 1 Openharmony | 2025-10-16 | 3.3 Low | 
| in OpenHarmony v5.0.2 and prior versions allow a local attacker case DOS through missing release of memory. | ||||
| CVE-2024-57947 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-15 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_set_pipapo: fix initial map fill The initial buffer has to be inited to all-ones, but it must restrict it to the size of the first field, not the total field size. After each round in the map search step, the result and the fill map are swapped, so if we have a set where f->bsize of the first element is smaller than m->bsize_max, those one-bits are leaked into future rounds result map. This makes pipapo find an incorrect matching results for sets where first field size is not the largest. Followup patch adds a test case to nft_concat_range.sh selftest script. Thanks to Stefano Brivio for pointing out that we need to zero out the remainder explicitly, only correcting memset() argument isn't enough. | ||||
| CVE-2025-40364 | 1 Linux | 1 Linux Kernel | 2025-10-11 | 3.3 Low | 
| In the Linux kernel, the following vulnerability has been resolved: io_uring: fix io_req_prep_async with provided buffers io_req_prep_async() can import provided buffers, commit the ring state by giving up on that before, it'll be reimported later if needed. | ||||
| CVE-2023-7192 | 2 Linux, Redhat | 7 Linux Kernel, Enterprise Linux, Rhel Aus and 4 more | 2025-10-10 | 5.5 Medium | 
| A memory leak problem was found in ctnetlink_create_conntrack in net/netfilter/nf_conntrack_netlink.c in the Linux Kernel. This issue may allow a local attacker with CAP_NET_ADMIN privileges to cause a denial of service (DoS) attack due to a refcount overflow. | ||||
| CVE-2025-8277 | 1 Redhat | 2 Enterprise Linux, Openshift | 2025-10-08 | 3.1 Low | 
| A flaw was found in libssh's handling of key exchange (KEX) processes when a client repeatedly sends incorrect KEX guesses. The library fails to free memory during these rekey operations, which can gradually exhaust system memory. This issue can lead to crashes on the client side, particularly when using libgcrypt, which impacts application stability and availability. | ||||
| CVE-2024-53236 | 1 Linux | 1 Linux Kernel | 2025-10-08 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: xsk: Free skb when TX metadata options are invalid When a new skb is allocated for transmitting an xsk descriptor, i.e., for every non-multibuf descriptor or the first frag of a multibuf descriptor, but the descriptor is later found to have invalid options set for the TX metadata, the new skb is never freed. This can leak skbs until the send buffer is full which makes sending more packets impossible. Fix this by freeing the skb in the error path if we are currently dealing with the first frag, i.e., an skb allocated in this iteration of xsk_build_skb. | ||||
| CVE-2024-53118 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: vsock: Fix sk_error_queue memory leak Kernel queues MSG_ZEROCOPY completion notifications on the error queue. Where they remain, until explicitly recv()ed. To prevent memory leaks, clean up the queue when the socket is destroyed. unreferenced object 0xffff8881028beb00 (size 224): comm "vsock_test", pid 1218, jiffies 4294694897 hex dump (first 32 bytes): 90 b0 21 17 81 88 ff ff 90 b0 21 17 81 88 ff ff ..!.......!..... 00 00 00 00 00 00 00 00 00 b0 21 17 81 88 ff ff ..........!..... backtrace (crc 6c7031ca): [<ffffffff81418ef7>] kmem_cache_alloc_node_noprof+0x2f7/0x370 [<ffffffff81d35882>] __alloc_skb+0x132/0x180 [<ffffffff81d2d32b>] sock_omalloc+0x4b/0x80 [<ffffffff81d3a8ae>] msg_zerocopy_realloc+0x9e/0x240 [<ffffffff81fe5cb2>] virtio_transport_send_pkt_info+0x412/0x4c0 [<ffffffff81fe6183>] virtio_transport_stream_enqueue+0x43/0x50 [<ffffffff81fe0813>] vsock_connectible_sendmsg+0x373/0x450 [<ffffffff81d233d5>] ____sys_sendmsg+0x365/0x3a0 [<ffffffff81d246f4>] ___sys_sendmsg+0x84/0xd0 [<ffffffff81d26f47>] __sys_sendmsg+0x47/0x80 [<ffffffff820d3df3>] do_syscall_64+0x93/0x180 [<ffffffff8220012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e | ||||
| CVE-2024-53117 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: virtio/vsock: Improve MSG_ZEROCOPY error handling Add a missing kfree_skb() to prevent memory leaks. | ||||
| CVE-2024-53087 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix possible exec queue leak in exec IOCTL In a couple of places after an exec queue is looked up the exec IOCTL returns on input errors without dropping the exec queue ref. Fix this ensuring the exec queue ref is dropped on input error. (cherry picked from commit 07064a200b40ac2195cb6b7b779897d9377e5e6f) | ||||
| CVE-2024-53084 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: drm/imagination: Break an object reference loop When remaining resources are being cleaned up on driver close, outstanding VM mappings may result in resources being leaked, due to an object reference loop, as shown below, with each object (or set of objects) referencing the object below it: PVR GEM Object GPU scheduler "finished" fence GPU scheduler “scheduled” fence PVR driver “done” fence PVR Context PVR VM Context PVR VM Mappings PVR GEM Object The reference that the PVR VM Context has on the VM mappings is a soft one, in the sense that the freeing of outstanding VM mappings is done as part of VM context destruction; no reference counts are involved, as is the case for all the other references in the loop. To break the reference loop during cleanup, free the outstanding VM mappings before destroying the PVR Context associated with the VM context. | ||||
| CVE-2024-53077 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: rpcrdma: Always release the rpcrdma_device's xa_array Dai pointed out that the xa_init_flags() in rpcrdma_add_one() needs to have a matching xa_destroy() in rpcrdma_remove_one() to release underlying memory that the xarray might have accrued during operation. | ||||
| CVE-2024-53076 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: iio: gts-helper: Fix memory leaks for the error path of iio_gts_build_avail_scale_table() If per_time_scales[i] or per_time_gains[i] kcalloc fails in the for loop of iio_gts_build_avail_scale_table(), the err_free_out will fail to call kfree() each time when i is reduced to 0, so all the per_time_scales[0] and per_time_gains[0] will not be freed, which will cause memory leaks. Fix it by checking if i >= 0. | ||||
| CVE-2024-50254 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: bpf: Free dynamically allocated bits in bpf_iter_bits_destroy() bpf_iter_bits_destroy() uses "kit->nr_bits <= 64" to check whether the bits are dynamically allocated. However, the check is incorrect and may cause a kmemleak as shown below: unreferenced object 0xffff88812628c8c0 (size 32): comm "swapper/0", pid 1, jiffies 4294727320 hex dump (first 32 bytes): b0 c1 55 f5 81 88 ff ff f0 f0 f0 f0 f0 f0 f0 f0 ..U........... f0 f0 f0 f0 f0 f0 f0 f0 00 00 00 00 00 00 00 00 .............. backtrace (crc 781e32cc): [<00000000c452b4ab>] kmemleak_alloc+0x4b/0x80 [<0000000004e09f80>] __kmalloc_node_noprof+0x480/0x5c0 [<00000000597124d6>] __alloc.isra.0+0x89/0xb0 [<000000004ebfffcd>] alloc_bulk+0x2af/0x720 [<00000000d9c10145>] prefill_mem_cache+0x7f/0xb0 [<00000000ff9738ff>] bpf_mem_alloc_init+0x3e2/0x610 [<000000008b616eac>] bpf_global_ma_init+0x19/0x30 [<00000000fc473efc>] do_one_initcall+0xd3/0x3c0 [<00000000ec81498c>] kernel_init_freeable+0x66a/0x940 [<00000000b119f72f>] kernel_init+0x20/0x160 [<00000000f11ac9a7>] ret_from_fork+0x3c/0x70 [<0000000004671da4>] ret_from_fork_asm+0x1a/0x30 That is because nr_bits will be set as zero in bpf_iter_bits_next() after all bits have been iterated. Fix the issue by setting kit->bit to kit->nr_bits instead of setting kit->nr_bits to zero when the iteration completes in bpf_iter_bits_next(). In addition, use "!nr_bits || bits >= nr_bits" to check whether the iteration is complete and still use "nr_bits > 64" to indicate whether bits are dynamically allocated. The "!nr_bits" check is necessary because bpf_iter_bits_new() may fail before setting kit->nr_bits, and this condition will stop the iteration early instead of accessing the zeroed or freed kit->bits. Considering the initial value of kit->bits is -1 and the type of kit->nr_bits is unsigned int, change the type of kit->nr_bits to int. The potential overflow problem will be handled in the following patch. | ||||
| CVE-2024-50231 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: iio: gts-helper: Fix memory leaks in iio_gts_build_avail_scale_table() modprobe iio-test-gts and rmmod it, then the following memory leak occurs: unreferenced object 0xffffff80c810be00 (size 64): comm "kunit_try_catch", pid 1654, jiffies 4294913981 hex dump (first 32 bytes): 02 00 00 00 08 00 00 00 20 00 00 00 40 00 00 00 ........ ...@... 80 00 00 00 00 02 00 00 00 04 00 00 00 08 00 00 ................ backtrace (crc a63d875e): [<0000000028c1b3c2>] kmemleak_alloc+0x34/0x40 [<000000001d6ecc87>] __kmalloc_noprof+0x2bc/0x3c0 [<00000000393795c1>] devm_iio_init_iio_gts+0x4b4/0x16f4 [<0000000071bb4b09>] 0xffffffdf052a62e0 [<000000000315bc18>] 0xffffffdf052a6488 [<00000000f9dc55b5>] kunit_try_run_case+0x13c/0x3ac [<00000000175a3fd4>] kunit_generic_run_threadfn_adapter+0x80/0xec [<00000000f505065d>] kthread+0x2e8/0x374 [<00000000bbfb0e5d>] ret_from_fork+0x10/0x20 unreferenced object 0xffffff80cbfe9e70 (size 16): comm "kunit_try_catch", pid 1658, jiffies 4294914015 hex dump (first 16 bytes): 10 00 00 00 40 00 00 00 80 00 00 00 00 00 00 00 ....@........... backtrace (crc 857f0cb4): [<0000000028c1b3c2>] kmemleak_alloc+0x34/0x40 [<000000001d6ecc87>] __kmalloc_noprof+0x2bc/0x3c0 [<00000000393795c1>] devm_iio_init_iio_gts+0x4b4/0x16f4 [<0000000071bb4b09>] 0xffffffdf052a62e0 [<000000007d089d45>] 0xffffffdf052a6864 [<00000000f9dc55b5>] kunit_try_run_case+0x13c/0x3ac [<00000000175a3fd4>] kunit_generic_run_threadfn_adapter+0x80/0xec [<00000000f505065d>] kthread+0x2e8/0x374 [<00000000bbfb0e5d>] ret_from_fork+0x10/0x20 ...... It includes 5*5 times "size 64" memory leaks, which correspond to 5 times test_init_iio_gain_scale() calls with gts_test_gains size 10 (10*size(int)) and gts_test_itimes size 5. It also includes 5*1 times "size 16" memory leak, which correspond to one time __test_init_iio_gain_scale() call with gts_test_gains_gain_low size 3 (3*size(int)) and gts_test_itimes size 5. The reason is that the per_time_gains[i] is not freed which is allocated in the "gts->num_itime" for loop in iio_gts_build_avail_scale_table(). | ||||
| CVE-2024-50214 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: drm/connector: hdmi: Fix memory leak in drm_display_mode_from_cea_vic() modprobe drm_connector_test and then rmmod drm_connector_test, the following memory leak occurs. The `mode` allocated in drm_mode_duplicate() called by drm_display_mode_from_cea_vic() is not freed, which cause the memory leak: unreferenced object 0xffffff80cb0ee400 (size 128): comm "kunit_try_catch", pid 1948, jiffies 4294950339 hex dump (first 32 bytes): 14 44 02 00 80 07 d8 07 04 08 98 08 00 00 38 04 .D............8. 3c 04 41 04 65 04 00 00 05 00 00 00 00 00 00 00 <.A.e........... backtrace (crc 90e9585c): [<00000000ec42e3d7>] kmemleak_alloc+0x34/0x40 [<00000000d0ef055a>] __kmalloc_cache_noprof+0x26c/0x2f4 [<00000000c2062161>] drm_mode_duplicate+0x44/0x19c [<00000000f96c74aa>] drm_display_mode_from_cea_vic+0x88/0x98 [<00000000d8f2c8b4>] 0xffffffdc982a4868 [<000000005d164dbc>] kunit_try_run_case+0x13c/0x3ac [<000000006fb23398>] kunit_generic_run_threadfn_adapter+0x80/0xec [<000000006ea56ca0>] kthread+0x2e8/0x374 [<000000000676063f>] ret_from_fork+0x10/0x20 ...... Free `mode` by using drm_kunit_display_mode_from_cea_vic() to fix it. | ||||
| CVE-2024-50213 | 1 Linux | 1 Linux Kernel | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic() modprobe drm_hdmi_state_helper_test and then rmmod it, the following memory leak occurs. The `mode` allocated in drm_mode_duplicate() called by drm_display_mode_from_cea_vic() is not freed, which cause the memory leak: unreferenced object 0xffffff80ccd18100 (size 128): comm "kunit_try_catch", pid 1851, jiffies 4295059695 hex dump (first 32 bytes): 57 62 00 00 80 02 90 02 f0 02 20 03 00 00 e0 01 Wb........ ..... ea 01 ec 01 0d 02 00 00 0a 00 00 00 00 00 00 00 ................ backtrace (crc c2f1aa95): [<000000000f10b11b>] kmemleak_alloc+0x34/0x40 [<000000001cd4cf73>] __kmalloc_cache_noprof+0x26c/0x2f4 [<00000000f1f3cffa>] drm_mode_duplicate+0x44/0x19c [<000000008cbeef13>] drm_display_mode_from_cea_vic+0x88/0x98 [<0000000019daaacf>] 0xffffffedc11ae69c [<000000000aad0f85>] kunit_try_run_case+0x13c/0x3ac [<00000000a9210bac>] kunit_generic_run_threadfn_adapter+0x80/0xec [<000000000a0b2e9e>] kthread+0x2e8/0x374 [<00000000bd668858>] ret_from_fork+0x10/0x20 ...... Free `mode` by using drm_kunit_display_mode_from_cea_vic() to fix it. | ||||
| CVE-2024-50197 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-10-01 | 5.5 Medium | 
| In the Linux kernel, the following vulnerability has been resolved: pinctrl: intel: platform: fix error path in device_for_each_child_node() The device_for_each_child_node() loop requires calls to fwnode_handle_put() upon early returns to decrement the refcount of the child node and avoid leaking memory if that error path is triggered. There is one early returns within that loop in intel_platform_pinctrl_prepare_community(), but fwnode_handle_put() is missing. Instead of adding the missing call, the scoped version of the loop can be used to simplify the code and avoid mistakes in the future if new early returns are added, as the child node is only used for parsing, and it is never assigned. | ||||