Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
12795 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-52438 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: binder: fix use-after-free in shinker's callback The mmap read lock is used during the shrinker's callback, which means that using alloc->vma pointer isn't safe as it can race with munmap(). As of commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap") the mmap lock is downgraded after the vma has been isolated. I was able to reproduce this issue by manually adding some delays and triggering page reclaiming through the shrinker's debug sysfs. The following KASAN report confirms the UAF: ================================================================== BUG: KASAN: slab-use-after-free in zap_page_range_single+0x470/0x4b8 Read of size 8 at addr ffff356ed50e50f0 by task bash/478 CPU: 1 PID: 478 Comm: bash Not tainted 6.6.0-rc5-00055-g1c8b86a3799f-dirty #70 Hardware name: linux,dummy-virt (DT) Call trace: zap_page_range_single+0x470/0x4b8 binder_alloc_free_page+0x608/0xadc __list_lru_walk_one+0x130/0x3b0 list_lru_walk_node+0xc4/0x22c binder_shrink_scan+0x108/0x1dc shrinker_debugfs_scan_write+0x2b4/0x500 full_proxy_write+0xd4/0x140 vfs_write+0x1ac/0x758 ksys_write+0xf0/0x1dc __arm64_sys_write+0x6c/0x9c Allocated by task 492: kmem_cache_alloc+0x130/0x368 vm_area_alloc+0x2c/0x190 mmap_region+0x258/0x18bc do_mmap+0x694/0xa60 vm_mmap_pgoff+0x170/0x29c ksys_mmap_pgoff+0x290/0x3a0 __arm64_sys_mmap+0xcc/0x144 Freed by task 491: kmem_cache_free+0x17c/0x3c8 vm_area_free_rcu_cb+0x74/0x98 rcu_core+0xa38/0x26d4 rcu_core_si+0x10/0x1c __do_softirq+0x2fc/0xd24 Last potentially related work creation: __call_rcu_common.constprop.0+0x6c/0xba0 call_rcu+0x10/0x1c vm_area_free+0x18/0x24 remove_vma+0xe4/0x118 do_vmi_align_munmap.isra.0+0x718/0xb5c do_vmi_munmap+0xdc/0x1fc __vm_munmap+0x10c/0x278 __arm64_sys_munmap+0x58/0x7c Fix this issue by performing instead a vma_lookup() which will fail to find the vma that was isolated before the mmap lock downgrade. Note that this option has better performance than upgrading to a mmap write lock which would increase contention. Plus, mmap_write_trylock() has been recently removed anyway. | ||||
CVE-2023-52435 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: prevent mss overflow in skb_segment() Once again syzbot is able to crash the kernel in skb_segment() [1] GSO_BY_FRAGS is a forbidden value, but unfortunately the following computation in skb_segment() can reach it quite easily : mss = mss * partial_segs; 65535 = 3 * 5 * 17 * 257, so many initial values of mss can lead to a bad final result. Make sure to limit segmentation so that the new mss value is smaller than GSO_BY_FRAGS. [1] general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 1 PID: 5079 Comm: syz-executor993 Not tainted 6.7.0-rc4-syzkaller-00141-g1ae4cd3cbdd0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/10/2023 RIP: 0010:skb_segment+0x181d/0x3f30 net/core/skbuff.c:4551 Code: 83 e3 02 e9 fb ed ff ff e8 90 68 1c f9 48 8b 84 24 f8 00 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 8a 21 00 00 48 8b 84 24 f8 00 RSP: 0018:ffffc900043473d0 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000010046 RCX: ffffffff886b1597 RDX: 000000000000000e RSI: ffffffff886b2520 RDI: 0000000000000070 RBP: ffffc90004347578 R08: 0000000000000005 R09: 000000000000ffff R10: 000000000000ffff R11: 0000000000000002 R12: ffff888063202ac0 R13: 0000000000010000 R14: 000000000000ffff R15: 0000000000000046 FS: 0000555556e7e380(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020010000 CR3: 0000000027ee2000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> udp6_ufo_fragment+0xa0e/0xd00 net/ipv6/udp_offload.c:109 ipv6_gso_segment+0x534/0x17e0 net/ipv6/ip6_offload.c:120 skb_mac_gso_segment+0x290/0x610 net/core/gso.c:53 __skb_gso_segment+0x339/0x710 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x36c/0xeb0 net/core/dev.c:3626 __dev_queue_xmit+0x6f3/0x3d60 net/core/dev.c:4338 dev_queue_xmit include/linux/netdevice.h:3134 [inline] packet_xmit+0x257/0x380 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x24c6/0x5220 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0xd5/0x180 net/socket.c:745 __sys_sendto+0x255/0x340 net/socket.c:2190 __do_sys_sendto net/socket.c:2202 [inline] __se_sys_sendto net/socket.c:2198 [inline] __x64_sys_sendto+0xe0/0x1b0 net/socket.c:2198 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0x40/0x110 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x63/0x6b RIP: 0033:0x7f8692032aa9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 d1 19 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fff8d685418 EFLAGS: 00000246 ORIG_RAX: 000000000000002c RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f8692032aa9 RDX: 0000000000010048 RSI: 00000000200000c0 RDI: 0000000000000003 RBP: 00000000000f4240 R08: 0000000020000540 R09: 0000000000000014 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fff8d685480 R13: 0000000000000001 R14: 00007fff8d685480 R15: 0000000000000003 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:skb_segment+0x181d/0x3f30 net/core/skbuff.c:4551 Code: 83 e3 02 e9 fb ed ff ff e8 90 68 1c f9 48 8b 84 24 f8 00 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e 8a 21 00 00 48 8b 84 24 f8 00 RSP: 0018:ffffc900043473d0 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000010046 RCX: ffffffff886b1597 RDX: 000000000000000e RSI: ffffffff886b2520 RDI: 0000000000000070 RBP: ffffc90004347578 R0 ---truncated--- | ||||
CVE-2023-52434 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 8.0 High |
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential OOBs in smb2_parse_contexts() Validate offsets and lengths before dereferencing create contexts in smb2_parse_contexts(). This fixes following oops when accessing invalid create contexts from server: BUG: unable to handle page fault for address: ffff8881178d8cc3 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 4a01067 P4D 4a01067 PUD 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 3 PID: 1736 Comm: mount.cifs Not tainted 6.7.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:smb2_parse_contexts+0xa0/0x3a0 [cifs] Code: f8 10 75 13 48 b8 93 ad 25 50 9c b4 11 e7 49 39 06 0f 84 d2 00 00 00 8b 45 00 85 c0 74 61 41 29 c5 48 01 c5 41 83 fd 0f 76 55 <0f> b7 7d 04 0f b7 45 06 4c 8d 74 3d 00 66 83 f8 04 75 bc ba 04 00 RSP: 0018:ffffc900007939e0 EFLAGS: 00010216 RAX: ffffc90000793c78 RBX: ffff8880180cc000 RCX: ffffc90000793c90 RDX: ffffc90000793cc0 RSI: ffff8880178d8cc0 RDI: ffff8880180cc000 RBP: ffff8881178d8cbf R08: ffffc90000793c22 R09: 0000000000000000 R10: ffff8880180cc000 R11: 0000000000000024 R12: 0000000000000000 R13: 0000000000000020 R14: 0000000000000000 R15: ffffc90000793c22 FS: 00007f873753cbc0(0000) GS:ffff88806bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffff8881178d8cc3 CR3: 00000000181ca000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x181/0x480 ? search_module_extables+0x19/0x60 ? srso_alias_return_thunk+0x5/0xfbef5 ? exc_page_fault+0x1b6/0x1c0 ? asm_exc_page_fault+0x26/0x30 ? smb2_parse_contexts+0xa0/0x3a0 [cifs] SMB2_open+0x38d/0x5f0 [cifs] ? smb2_is_path_accessible+0x138/0x260 [cifs] smb2_is_path_accessible+0x138/0x260 [cifs] cifs_is_path_remote+0x8d/0x230 [cifs] cifs_mount+0x7e/0x350 [cifs] cifs_smb3_do_mount+0x128/0x780 [cifs] smb3_get_tree+0xd9/0x290 [cifs] vfs_get_tree+0x2c/0x100 ? capable+0x37/0x70 path_mount+0x2d7/0xb80 ? srso_alias_return_thunk+0x5/0xfbef5 ? _raw_spin_unlock_irqrestore+0x44/0x60 __x64_sys_mount+0x11a/0x150 do_syscall_64+0x47/0xf0 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f8737657b1e | ||||
CVE-2025-22014 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pdr: Fix the potential deadlock When some client process A call pdr_add_lookup() to add the look up for the service and does schedule locator work, later a process B got a new server packet indicating locator is up and call pdr_locator_new_server() which eventually sets pdr->locator_init_complete to true which process A sees and takes list lock and queries domain list but it will timeout due to deadlock as the response will queued to the same qmi->wq and it is ordered workqueue and process B is not able to complete new server request work due to deadlock on list lock. Fix it by removing the unnecessary list iteration as the list iteration is already being done inside locator work, so avoid it here and just call schedule_work() here. Process A Process B process_scheduled_works() pdr_add_lookup() qmi_data_ready_work() process_scheduled_works() pdr_locator_new_server() pdr->locator_init_complete=true; pdr_locator_work() mutex_lock(&pdr->list_lock); pdr_locate_service() mutex_lock(&pdr->list_lock); pdr_get_domain_list() pr_err("PDR: %s get domain list txn wait failed: %d\n", req->service_name, ret); Timeout error log due to deadlock: " PDR: tms/servreg get domain list txn wait failed: -110 PDR: service lookup for msm/adsp/sensor_pd:tms/servreg failed: -110 " Thanks to Bjorn and Johan for letting me know that this commit also fixes an audio regression when using the in-kernel pd-mapper as that makes it easier to hit this race. [1] | ||||
CVE-2025-22012 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Revert "arm64: dts: qcom: sdm845: Affirm IDR0.CCTW on apps_smmu" There are reports that the pagetable walker cache coherency is not a given across the spectrum of SDM845/850 devices, leading to lock-ups and resets. It works fine on some devices (like the Dragonboard 845c, but not so much on the Lenovo Yoga C630). This unfortunately looks like a fluke in firmware development, where likely somewhere in the vast hypervisor stack, a change to accommodate for this was only introduced after the initial software release (which often serves as a baseline for products). Revert the change to avoid additional guesswork around crashes. This reverts commit 6b31a9744b8726c69bb0af290f8475a368a4b805. | ||||
CVE-2025-22011 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ARM: dts: bcm2711: Fix xHCI power-domain During s2idle tests on the Raspberry CM4 the VPU firmware always crashes on xHCI power-domain resume: root@raspberrypi:/sys/power# echo freeze > state [ 70.724347] xhci_suspend finished [ 70.727730] xhci_plat_suspend finished [ 70.755624] bcm2835-power bcm2835-power: Power grafx off [ 70.761127] USB: Set power to 0 [ 74.653040] USB: Failed to set power to 1 (-110) This seems to be caused because of the mixed usage of raspberrypi-power and bcm2835-power at the same time. So avoid the usage of the VPU firmware power-domain driver, which prevents the VPU crash. | ||||
CVE-2025-22010 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup during bt pages loop Driver runs a for-loop when allocating bt pages and mapping them with buffer pages. When a large buffer (e.g. MR over 100GB) is being allocated, it may require a considerable loop count. This will lead to soft lockup: watchdog: BUG: soft lockup - CPU#27 stuck for 22s! ... Call trace: hem_list_alloc_mid_bt+0x124/0x394 [hns_roce_hw_v2] hns_roce_hem_list_request+0xf8/0x160 [hns_roce_hw_v2] hns_roce_mtr_create+0x2e4/0x360 [hns_roce_hw_v2] alloc_mr_pbl+0xd4/0x17c [hns_roce_hw_v2] hns_roce_reg_user_mr+0xf8/0x190 [hns_roce_hw_v2] ib_uverbs_reg_mr+0x118/0x290 watchdog: BUG: soft lockup - CPU#35 stuck for 23s! ... Call trace: hns_roce_hem_list_find_mtt+0x7c/0xb0 [hns_roce_hw_v2] mtr_map_bufs+0xc4/0x204 [hns_roce_hw_v2] hns_roce_mtr_create+0x31c/0x3c4 [hns_roce_hw_v2] alloc_mr_pbl+0xb0/0x160 [hns_roce_hw_v2] hns_roce_reg_user_mr+0x108/0x1c0 [hns_roce_hw_v2] ib_uverbs_reg_mr+0x120/0x2bc Add a cond_resched() to fix soft lockup during these loops. In order not to affect the allocation performance of normal-size buffer, set the loop count of a 100GB MR as the threshold to call cond_resched(). | ||||
CVE-2025-22009 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: regulator: dummy: force synchronous probing Sometimes I get a NULL pointer dereference at boot time in kobject_get() with the following call stack: anatop_regulator_probe() devm_regulator_register() regulator_register() regulator_resolve_supply() kobject_get() By placing some extra BUG_ON() statements I could verify that this is raised because probing of the 'dummy' regulator driver is not completed ('dummy_regulator_rdev' is still NULL). In the JTAG debugger I can see that dummy_regulator_probe() and anatop_regulator_probe() can be run by different kernel threads (kworker/u4:*). I haven't further investigated whether this can be changed or if there are other possibilities to force synchronization between these two probe routines. On the other hand I don't expect much boot time penalty by probing the 'dummy' regulator synchronously. | ||||
CVE-2025-22007 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix error code in chan_alloc_skb_cb() The chan_alloc_skb_cb() function is supposed to return error pointers on error. Returning NULL will lead to a NULL dereference. | ||||
CVE-2025-22006 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: Fix NAPI registration sequence Registering the interrupts for TX or RX DMA Channels prior to registering their respective NAPI callbacks can result in a NULL pointer dereference. This is seen in practice as a random occurrence since it depends on the randomness associated with the generation of traffic by Linux and the reception of traffic from the wire. | ||||
CVE-2025-22005 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix memleak of nhc_pcpu_rth_output in fib_check_nh_v6_gw(). fib_check_nh_v6_gw() expects that fib6_nh_init() cleans up everything when it fails. Commit 7dd73168e273 ("ipv6: Always allocate pcpu memory in a fib6_nh") moved fib_nh_common_init() before alloc_percpu_gfp() within fib6_nh_init() but forgot to add cleanup for fib6_nh->nh_common.nhc_pcpu_rth_output in case it fails to allocate fib6_nh->rt6i_pcpu, resulting in memleak. Let's call fib_nh_common_release() and clear nhc_pcpu_rth_output in the error path. Note that we can remove the fib6_nh_release() call in nh_create_ipv6() later in net-next.git. | ||||
CVE-2025-22004 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: atm: fix use after free in lec_send() The ->send() operation frees skb so save the length before calling ->send() to avoid a use after free. | ||||
CVE-2025-22003 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: can: ucan: fix out of bound read in strscpy() source Commit 7fdaf8966aae ("can: ucan: use strscpy() to instead of strncpy()") unintentionally introduced a one byte out of bound read on strscpy()'s source argument (which is kind of ironic knowing that strscpy() is meant to be a more secure alternative :)). Let's consider below buffers: dest[len + 1]; /* will be NUL terminated */ src[len]; /* may not be NUL terminated */ When doing: strncpy(dest, src, len); dest[len] = '\0'; strncpy() will read up to len bytes from src. On the other hand: strscpy(dest, src, len + 1); will read up to len + 1 bytes from src, that is to say, an out of bound read of one byte will occur on src if it is not NUL terminated. Note that the src[len] byte is never copied, but strscpy() still needs to read it to check whether a truncation occurred or not. This exact pattern happened in ucan. The root cause is that the source is not NUL terminated. Instead of doing a copy in a local buffer, directly NUL terminate it as soon as usb_control_msg() returns. With this, the local firmware_str[] variable can be removed. On top of this do a couple refactors: - ucan_ctl_payload->raw is only used for the firmware string, so rename it to ucan_ctl_payload->fw_str and change its type from u8 to char. - ucan_device_request_in() is only used to retrieve the firmware string, so rename it to ucan_get_fw_str() and refactor it to make it directly handle all the string termination logic. | ||||
CVE-2025-22002 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfs: Call `invalidate_cache` only if implemented Many filesystems such as NFS and Ceph do not implement the `invalidate_cache` method. On those filesystems, if writing to the cache (`NETFS_WRITE_TO_CACHE`) fails for some reason, the kernel crashes like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page PGD 0 P4D 0 Oops: Oops: 0010 [#1] SMP PTI CPU: 9 UID: 0 PID: 3380 Comm: kworker/u193:11 Not tainted 6.13.3-cm4all1-hp #437 Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 10/17/2018 Workqueue: events_unbound netfs_write_collection_worker RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffff9b86e2ca7dc0 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 7fffffffffffffff RDX: 0000000000000001 RSI: ffff89259d576a18 RDI: ffff89259d576900 RBP: ffff89259d5769b0 R08: ffff9b86e2ca7d28 R09: 0000000000000002 R10: ffff89258ceaca80 R11: 0000000000000001 R12: 0000000000000020 R13: ffff893d158b9338 R14: ffff89259d576900 R15: ffff89259d5769b0 FS: 0000000000000000(0000) GS:ffff893c9fa40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 000000054442e003 CR4: 00000000001706f0 Call Trace: <TASK> ? __die+0x1f/0x60 ? page_fault_oops+0x15c/0x460 ? try_to_wake_up+0x2d2/0x530 ? exc_page_fault+0x5e/0x100 ? asm_exc_page_fault+0x22/0x30 netfs_write_collection_worker+0xe9f/0x12b0 ? xs_poll_check_readable+0x3f/0x80 ? xs_stream_data_receive_workfn+0x8d/0x110 process_one_work+0x134/0x2d0 worker_thread+0x299/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xba/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: CR2: 0000000000000000 This patch adds the missing `NULL` check. | ||||
CVE-2025-22001 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Fix integer overflow in qaic_validate_req() These are u64 variables that come from the user via qaic_attach_slice_bo_ioctl(). Use check_add_overflow() to ensure that the math doesn't have an integer wrapping bug. | ||||
CVE-2025-22000 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: drop beyond-EOF folios with the right number of refs When an after-split folio is large and needs to be dropped due to EOF, folio_put_refs(folio, folio_nr_pages(folio)) should be used to drop all page cache refs. Otherwise, the folio will not be freed, causing memory leak. This leak would happen on a filesystem with blocksize > page_size and a truncate is performed, where the blocksize makes folios split to >0 order ones, causing truncated folios not being freed. | ||||
CVE-2025-21998 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: fix efivars registration race Since the conversion to using the TZ allocator, the efivars service is registered before the memory pool has been allocated, something which can lead to a NULL-pointer dereference in case of a racing EFI variable access. Make sure that all resources have been set up before registering the efivars. | ||||
CVE-2025-21997 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: xsk: fix an integer overflow in xp_create_and_assign_umem() Since the i and pool->chunk_size variables are of type 'u32', their product can wrap around and then be cast to 'u64'. This can lead to two different XDP buffers pointing to the same memory area. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE. | ||||
CVE-2025-21996 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: fix uninitialized size issue in radeon_vce_cs_parse() On the off chance that command stream passed from userspace via ioctl() call to radeon_vce_cs_parse() is weirdly crafted and first command to execute is to encode (case 0x03000001), the function in question will attempt to call radeon_vce_cs_reloc() with size argument that has not been properly initialized. Specifically, 'size' will point to 'tmp' variable before the latter had a chance to be assigned any value. Play it safe and init 'tmp' with 0, thus ensuring that radeon_vce_cs_reloc() will catch an early error in cases like these. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE. (cherry picked from commit 2d52de55f9ee7aaee0e09ac443f77855989c6b68) | ||||
CVE-2025-21995 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/sched: Fix fence reference count leak The last_scheduled fence leaks when an entity is being killed and adding the cleanup callback fails. Decrement the reference count of prev when dma_fence_add_callback() fails, ensuring proper balance. [phasta: add git tag info for stable kernel] |