Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
12795 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-48638 | 2 Linux, Redhat | 5 Linux Kernel, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: cgroup: cgroup_get_from_id() must check the looked-up kn is a directory cgroup has to be one kernfs dir, otherwise kernel panic is caused, especially cgroup id is provide from userspace. | ||||
CVE-2022-48637 | 2 Linux, Redhat | 5 Linux Kernel, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bnxt: prevent skb UAF after handing over to PTP worker When reading the timestamp is required bnxt_tx_int() hands over the ownership of the completed skb to the PTP worker. The skb should not be used afterwards, as the worker may run before the rest of our code and free the skb, leading to a use-after-free. Since dev_kfree_skb_any() accepts NULL make the loss of ownership more obvious and set skb to NULL. | ||||
CVE-2022-48636 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: fix Oops in dasd_alias_get_start_dev due to missing pavgroup Fix Oops in dasd_alias_get_start_dev() function caused by the pavgroup pointer being NULL. The pavgroup pointer is checked on the entrance of the function but without the lcu->lock being held. Therefore there is a race window between dasd_alias_get_start_dev() and _lcu_update() which sets pavgroup to NULL with the lcu->lock held. Fix by checking the pavgroup pointer with lcu->lock held. | ||||
CVE-2022-48635 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 6.2 Medium |
In the Linux kernel, the following vulnerability has been resolved: fsdax: Fix infinite loop in dax_iomap_rw() I got an infinite loop and a WARNING report when executing a tail command in virtiofs. WARNING: CPU: 10 PID: 964 at fs/iomap/iter.c:34 iomap_iter+0x3a2/0x3d0 Modules linked in: CPU: 10 PID: 964 Comm: tail Not tainted 5.19.0-rc7 Call Trace: <TASK> dax_iomap_rw+0xea/0x620 ? __this_cpu_preempt_check+0x13/0x20 fuse_dax_read_iter+0x47/0x80 fuse_file_read_iter+0xae/0xd0 new_sync_read+0xfe/0x180 ? 0xffffffff81000000 vfs_read+0x14d/0x1a0 ksys_read+0x6d/0xf0 __x64_sys_read+0x1a/0x20 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The tail command will call read() with a count of 0. In this case, iomap_iter() will report this WARNING, and always return 1 which casuing the infinite loop in dax_iomap_rw(). Fixing by checking count whether is 0 in dax_iomap_rw(). | ||||
CVE-2022-48629 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: crypto: qcom-rng - ensure buffer for generate is completely filled The generate function in struct rng_alg expects that the destination buffer is completely filled if the function returns 0. qcom_rng_read() can run into a situation where the buffer is partially filled with randomness and the remaining part of the buffer is zeroed since qcom_rng_generate() doesn't check the return value. This issue can be reproduced by running the following from libkcapi: kcapi-rng -b 9000000 > OUTFILE The generated OUTFILE will have three huge sections that contain all zeros, and this is caused by the code where the test 'val & PRNG_STATUS_DATA_AVAIL' fails. Let's fix this issue by ensuring that qcom_rng_read() always returns with a full buffer if the function returns success. Let's also have qcom_rng_generate() return the correct value. Here's some statistics from the ent project (https://www.fourmilab.ch/random/) that shows information about the quality of the generated numbers: $ ent -c qcom-random-before Value Char Occurrences Fraction 0 606748 0.067416 1 33104 0.003678 2 33001 0.003667 ... 253 � 32883 0.003654 254 � 33035 0.003671 255 � 33239 0.003693 Total: 9000000 1.000000 Entropy = 7.811590 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 2 percent. Chi square distribution for 9000000 samples is 9329962.81, and randomly would exceed this value less than 0.01 percent of the times. Arithmetic mean value of data bytes is 119.3731 (127.5 = random). Monte Carlo value for Pi is 3.197293333 (error 1.77 percent). Serial correlation coefficient is 0.159130 (totally uncorrelated = 0.0). Without this patch, the results of the chi-square test is 0.01%, and the numbers are certainly not random according to ent's project page. The results improve with this patch: $ ent -c qcom-random-after Value Char Occurrences Fraction 0 35432 0.003937 1 35127 0.003903 2 35424 0.003936 ... 253 � 35201 0.003911 254 � 34835 0.003871 255 � 35368 0.003930 Total: 9000000 1.000000 Entropy = 7.999979 bits per byte. Optimum compression would reduce the size of this 9000000 byte file by 0 percent. Chi square distribution for 9000000 samples is 258.77, and randomly would exceed this value 42.24 percent of the times. Arithmetic mean value of data bytes is 127.5006 (127.5 = random). Monte Carlo value for Pi is 3.141277333 (error 0.01 percent). Serial correlation coefficient is 0.000468 (totally uncorrelated = 0.0). This change was tested on a Nexus 5 phone (msm8974 SoC). | ||||
CVE-2022-48628 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ceph: drop messages from MDS when unmounting When unmounting all the dirty buffers will be flushed and after the last osd request is finished the last reference of the i_count will be released. Then it will flush the dirty cap/snap to MDSs, and the unmounting won't wait the possible acks, which will ihold the inodes when updating the metadata locally but makes no sense any more, of this. This will make the evict_inodes() to skip these inodes. If encrypt is enabled the kernel generate a warning when removing the encrypt keys when the skipped inodes still hold the keyring: WARNING: CPU: 4 PID: 168846 at fs/crypto/keyring.c:242 fscrypt_destroy_keyring+0x7e/0xd0 CPU: 4 PID: 168846 Comm: umount Tainted: G S 6.1.0-rc5-ceph-g72ead199864c #1 Hardware name: Supermicro SYS-5018R-WR/X10SRW-F, BIOS 2.0 12/17/2015 RIP: 0010:fscrypt_destroy_keyring+0x7e/0xd0 RSP: 0018:ffffc9000b277e28 EFLAGS: 00010202 RAX: 0000000000000002 RBX: ffff88810d52ac00 RCX: ffff88810b56aa00 RDX: 0000000080000000 RSI: ffffffff822f3a09 RDI: ffff888108f59000 RBP: ffff8881d394fb88 R08: 0000000000000028 R09: 0000000000000000 R10: 0000000000000001 R11: 11ff4fe6834fcd91 R12: ffff8881d394fc40 R13: ffff888108f59000 R14: ffff8881d394f800 R15: 0000000000000000 FS: 00007fd83f6f1080(0000) GS:ffff88885fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f918d417000 CR3: 000000017f89a005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> generic_shutdown_super+0x47/0x120 kill_anon_super+0x14/0x30 ceph_kill_sb+0x36/0x90 [ceph] deactivate_locked_super+0x29/0x60 cleanup_mnt+0xb8/0x140 task_work_run+0x67/0xb0 exit_to_user_mode_prepare+0x23d/0x240 syscall_exit_to_user_mode+0x25/0x60 do_syscall_64+0x40/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7fd83dc39e9b Later the kernel will crash when iput() the inodes and dereferencing the "sb->s_master_keys", which has been released by the generic_shutdown_super(). | ||||
CVE-2022-48627 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: vt: fix memory overlapping when deleting chars in the buffer A memory overlapping copy occurs when deleting a long line. This memory overlapping copy can cause data corruption when scr_memcpyw is optimized to memcpy because memcpy does not ensure its behavior if the destination buffer overlaps with the source buffer. The line buffer is not always broken, because the memcpy utilizes the hardware acceleration, whose result is not deterministic. Fix this problem by using replacing the scr_memcpyw with scr_memmovew. | ||||
CVE-2022-48626 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: moxart: fix potential use-after-free on remove path It was reported that the mmc host structure could be accessed after it was freed in moxart_remove(), so fix this by saving the base register of the device and using it instead of the pointer dereference. | ||||
CVE-2023-53026 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Fix ib block iterator counter overflow When registering a new DMA MR after selecting the best aligned page size for it, we iterate over the given sglist to split each entry to smaller, aligned to the selected page size, DMA blocks. In given circumstances where the sg entry and page size fit certain sizes and the sg entry is not aligned to the selected page size, the total size of the aligned pages we need to cover the sg entry is >= 4GB. Under this circumstances, while iterating page aligned blocks, the counter responsible for counting how much we advanced from the start of the sg entry is overflowed because its type is u32 and we pass 4GB in size. This can lead to an infinite loop inside the iterator function because the overflow prevents the counter to be larger than the size of the sg entry. Fix the presented problem by changing the advancement condition to eliminate overflow. Backtrace: [ 192.374329] efa_reg_user_mr_dmabuf [ 192.376783] efa_register_mr [ 192.382579] pgsz_bitmap 0xfffff000 rounddown 0x80000000 [ 192.386423] pg_sz [0x80000000] umem_length[0xc0000000] [ 192.392657] start 0x0 length 0xc0000000 params.page_shift 31 params.page_num 3 [ 192.399559] hp_cnt[3], pages_in_hp[524288] [ 192.403690] umem->sgt_append.sgt.nents[1] [ 192.407905] number entries: [1], pg_bit: [31] [ 192.411397] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.415601] biter->__sg_advance [665837568] sg_dma_len[3221225472] [ 192.419823] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.423976] biter->__sg_advance [2813321216] sg_dma_len[3221225472] [ 192.428243] biter->__sg_nents [1] biter->__sg [0000000008b0c5d8] [ 192.432397] biter->__sg_advance [665837568] sg_dma_len[3221225472] | ||||
CVE-2023-53023 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: nfc: Fix use-after-free in local_cleanup() Fix a use-after-free that occurs in kfree_skb() called from local_cleanup(). This could happen when killing nfc daemon (e.g. neard) after detaching an nfc device. When detaching an nfc device, local_cleanup() called from nfc_llcp_unregister_device() frees local->rx_pending and decreases local->ref by kref_put() in nfc_llcp_local_put(). In the terminating process, nfc daemon releases all sockets and it leads to decreasing local->ref. After the last release of local->ref, local_cleanup() called from local_release() frees local->rx_pending again, which leads to the bug. Setting local->rx_pending to NULL in local_cleanup() could prevent use-after-free when local_cleanup() is called twice. Found by a modified version of syzkaller. BUG: KASAN: use-after-free in kfree_skb() Call Trace: dump_stack_lvl (lib/dump_stack.c:106) print_address_description.constprop.0.cold (mm/kasan/report.c:306) kasan_check_range (mm/kasan/generic.c:189) kfree_skb (net/core/skbuff.c:955) local_cleanup (net/nfc/llcp_core.c:159) nfc_llcp_local_put.part.0 (net/nfc/llcp_core.c:172) nfc_llcp_local_put (net/nfc/llcp_core.c:181) llcp_sock_destruct (net/nfc/llcp_sock.c:959) __sk_destruct (net/core/sock.c:2133) sk_destruct (net/core/sock.c:2181) __sk_free (net/core/sock.c:2192) sk_free (net/core/sock.c:2203) llcp_sock_release (net/nfc/llcp_sock.c:646) __sock_release (net/socket.c:650) sock_close (net/socket.c:1365) __fput (fs/file_table.c:306) task_work_run (kernel/task_work.c:179) ptrace_notify (kernel/signal.c:2354) syscall_exit_to_user_mode_prepare (kernel/entry/common.c:278) syscall_exit_to_user_mode (kernel/entry/common.c:296) do_syscall_64 (arch/x86/entry/common.c:86) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:106) Allocated by task 4719: kasan_save_stack (mm/kasan/common.c:45) __kasan_slab_alloc (mm/kasan/common.c:325) slab_post_alloc_hook (mm/slab.h:766) kmem_cache_alloc_node (mm/slub.c:3497) __alloc_skb (net/core/skbuff.c:552) pn533_recv_response (drivers/nfc/pn533/usb.c:65) __usb_hcd_giveback_urb (drivers/usb/core/hcd.c:1671) usb_giveback_urb_bh (drivers/usb/core/hcd.c:1704) tasklet_action_common.isra.0 (kernel/softirq.c:797) __do_softirq (kernel/softirq.c:571) Freed by task 1901: kasan_save_stack (mm/kasan/common.c:45) kasan_set_track (mm/kasan/common.c:52) kasan_save_free_info (mm/kasan/genericdd.c:518) __kasan_slab_free (mm/kasan/common.c:236) kmem_cache_free (mm/slub.c:3809) kfree_skbmem (net/core/skbuff.c:874) kfree_skb (net/core/skbuff.c:931) local_cleanup (net/nfc/llcp_core.c:159) nfc_llcp_unregister_device (net/nfc/llcp_core.c:1617) nfc_unregister_device (net/nfc/core.c:1179) pn53x_unregister_nfc (drivers/nfc/pn533/pn533.c:2846) pn533_usb_disconnect (drivers/nfc/pn533/usb.c:579) usb_unbind_interface (drivers/usb/core/driver.c:458) device_release_driver_internal (drivers/base/dd.c:1279) bus_remove_device (drivers/base/bus.c:529) device_del (drivers/base/core.c:3665) usb_disable_device (drivers/usb/core/message.c:1420) usb_disconnect (drivers/usb/core.c:2261) hub_event (drivers/usb/core/hub.c:5833) process_one_work (arch/x86/include/asm/jump_label.h:27 include/linux/jump_label.h:212 include/trace/events/workqueue.h:108 kernel/workqueue.c:2281) worker_thread (include/linux/list.h:282 kernel/workqueue.c:2423) kthread (kernel/kthread.c:319) ret_from_fork (arch/x86/entry/entry_64.S:301) | ||||
CVE-2023-53022 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: enetc: avoid deadlock in enetc_tx_onestep_tstamp() This lockdep splat says it better than I could: ================================ WARNING: inconsistent lock state 6.2.0-rc2-07010-ga9b9500ffaac-dirty #967 Not tainted -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. kworker/1:3/179 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff3ec4036ce098 (_xmit_ETHER#2){+.?.}-{3:3}, at: netif_freeze_queues+0x5c/0xc0 {IN-SOFTIRQ-W} state was registered at: _raw_spin_lock+0x5c/0xc0 sch_direct_xmit+0x148/0x37c __dev_queue_xmit+0x528/0x111c ip6_finish_output2+0x5ec/0xb7c ip6_finish_output+0x240/0x3f0 ip6_output+0x78/0x360 ndisc_send_skb+0x33c/0x85c ndisc_send_rs+0x54/0x12c addrconf_rs_timer+0x154/0x260 call_timer_fn+0xb8/0x3a0 __run_timers.part.0+0x214/0x26c run_timer_softirq+0x3c/0x74 __do_softirq+0x14c/0x5d8 ____do_softirq+0x10/0x20 call_on_irq_stack+0x2c/0x5c do_softirq_own_stack+0x1c/0x30 __irq_exit_rcu+0x168/0x1a0 irq_exit_rcu+0x10/0x40 el1_interrupt+0x38/0x64 irq event stamp: 7825 hardirqs last enabled at (7825): [<ffffdf1f7200cae4>] exit_to_kernel_mode+0x34/0x130 hardirqs last disabled at (7823): [<ffffdf1f708105f0>] __do_softirq+0x550/0x5d8 softirqs last enabled at (7824): [<ffffdf1f7081050c>] __do_softirq+0x46c/0x5d8 softirqs last disabled at (7811): [<ffffdf1f708166e0>] ____do_softirq+0x10/0x20 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(_xmit_ETHER#2); <Interrupt> lock(_xmit_ETHER#2); *** DEADLOCK *** 3 locks held by kworker/1:3/179: #0: ffff3ec400004748 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #1: ffff80000a0bbdc8 ((work_completion)(&priv->tx_onestep_tstamp)){+.+.}-{0:0}, at: process_one_work+0x1f4/0x6c0 #2: ffff3ec4036cd438 (&dev->tx_global_lock){+.+.}-{3:3}, at: netif_tx_lock+0x1c/0x34 Workqueue: events enetc_tx_onestep_tstamp Call trace: print_usage_bug.part.0+0x208/0x22c mark_lock+0x7f0/0x8b0 __lock_acquire+0x7c4/0x1ce0 lock_acquire.part.0+0xe0/0x220 lock_acquire+0x68/0x84 _raw_spin_lock+0x5c/0xc0 netif_freeze_queues+0x5c/0xc0 netif_tx_lock+0x24/0x34 enetc_tx_onestep_tstamp+0x20/0x100 process_one_work+0x28c/0x6c0 worker_thread+0x74/0x450 kthread+0x118/0x11c but I'll say it anyway: the enetc_tx_onestep_tstamp() work item runs in process context, therefore with softirqs enabled (i.o.w., it can be interrupted by a softirq). If we hold the netif_tx_lock() when there is an interrupt, and the NET_TX softirq then gets scheduled, this will take the netif_tx_lock() a second time and deadlock the kernel. To solve this, use netif_tx_lock_bh(), which blocks softirqs from running. | ||||
CVE-2023-53021 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_taprio: fix possible use-after-free syzbot reported a nasty crash [1] in net_tx_action() which made little sense until we got a repro. This repro installs a taprio qdisc, but providing an invalid TCA_RATE attribute. qdisc_create() has to destroy the just initialized taprio qdisc, and taprio_destroy() is called. However, the hrtimer used by taprio had already fired, therefore advance_sched() called __netif_schedule(). Then net_tx_action was trying to use a destroyed qdisc. We can not undo the __netif_schedule(), so we must wait until one cpu serviced the qdisc before we can proceed. Many thanks to Alexander Potapenko for his help. [1] BUG: KMSAN: uninit-value in queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] BUG: KMSAN: uninit-value in do_raw_spin_trylock include/linux/spinlock.h:191 [inline] BUG: KMSAN: uninit-value in __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] BUG: KMSAN: uninit-value in _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 queued_spin_trylock include/asm-generic/qspinlock.h:94 [inline] do_raw_spin_trylock include/linux/spinlock.h:191 [inline] __raw_spin_trylock include/linux/spinlock_api_smp.h:89 [inline] _raw_spin_trylock+0x92/0xa0 kernel/locking/spinlock.c:138 spin_trylock include/linux/spinlock.h:359 [inline] qdisc_run_begin include/net/sch_generic.h:187 [inline] qdisc_run+0xee/0x540 include/net/pkt_sched.h:125 net_tx_action+0x77c/0x9a0 net/core/dev.c:5086 __do_softirq+0x1cc/0x7fb kernel/softirq.c:571 run_ksoftirqd+0x2c/0x50 kernel/softirq.c:934 smpboot_thread_fn+0x554/0x9f0 kernel/smpboot.c:164 kthread+0x31b/0x430 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 Uninit was created at: slab_post_alloc_hook mm/slab.h:732 [inline] slab_alloc_node mm/slub.c:3258 [inline] __kmalloc_node_track_caller+0x814/0x1250 mm/slub.c:4970 kmalloc_reserve net/core/skbuff.c:358 [inline] __alloc_skb+0x346/0xcf0 net/core/skbuff.c:430 alloc_skb include/linux/skbuff.h:1257 [inline] nlmsg_new include/net/netlink.h:953 [inline] netlink_ack+0x5f3/0x12b0 net/netlink/af_netlink.c:2436 netlink_rcv_skb+0x55d/0x6c0 net/netlink/af_netlink.c:2507 rtnetlink_rcv+0x30/0x40 net/core/rtnetlink.c:6108 netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345 netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921 sock_sendmsg_nosec net/socket.c:714 [inline] sock_sendmsg net/socket.c:734 [inline] ____sys_sendmsg+0xabc/0xe90 net/socket.c:2482 ___sys_sendmsg+0x2a1/0x3f0 net/socket.c:2536 __sys_sendmsg net/socket.c:2565 [inline] __do_sys_sendmsg net/socket.c:2574 [inline] __se_sys_sendmsg net/socket.c:2572 [inline] __x64_sys_sendmsg+0x367/0x540 net/socket.c:2572 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 6.0.0-rc2-syzkaller-47461-gac3859c02d7f #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022 | ||||
CVE-2023-53020 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: l2tp: close all race conditions in l2tp_tunnel_register() The code in l2tp_tunnel_register() is racy in several ways: 1. It modifies the tunnel socket _after_ publishing it. 2. It calls setup_udp_tunnel_sock() on an existing socket without locking. 3. It changes sock lock class on fly, which triggers many syzbot reports. This patch amends all of them by moving socket initialization code before publishing and under sock lock. As suggested by Jakub, the l2tp lockdep class is not necessary as we can just switch to bh_lock_sock_nested(). | ||||
CVE-2023-53018 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Fix memory leaks When hci_cmd_sync_queue() failed in hci_le_terminate_big() or hci_le_big_terminate(), the memory pointed by variable d is not freed, which will cause memory leak. Add release process to error path. | ||||
CVE-2023-53017 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix memory leak in hci_update_adv_data() When hci_cmd_sync_queue() failed in hci_update_adv_data(), inst_ptr is not freed, which will cause memory leak, convert to use ERR_PTR/PTR_ERR to pass the instance to callback so no memory needs to be allocated. | ||||
CVE-2023-53016 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix possible deadlock in rfcomm_sk_state_change syzbot reports a possible deadlock in rfcomm_sk_state_change [1]. While rfcomm_sock_connect acquires the sk lock and waits for the rfcomm lock, rfcomm_sock_release could have the rfcomm lock and hit a deadlock for acquiring the sk lock. Here's a simplified flow: rfcomm_sock_connect: lock_sock(sk) rfcomm_dlc_open: rfcomm_lock() rfcomm_sock_release: rfcomm_sock_shutdown: rfcomm_lock() __rfcomm_dlc_close: rfcomm_k_state_change: lock_sock(sk) This patch drops the sk lock before calling rfcomm_dlc_open to avoid the possible deadlock and holds sk's reference count to prevent use-after-free after rfcomm_dlc_open completes. | ||||
CVE-2023-53015 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Rhel Eus and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: betop: check shape of output reports betopff_init() only checks the total sum of the report counts for each report field to be at least 4, but hid_betopff_play() expects 4 report fields. A device advertising an output report with one field and 4 report counts would pass the check but crash the kernel with a NULL pointer dereference in hid_betopff_play(). | ||||
CVE-2023-53014 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra: Fix memory leak in terminate_all() Terminate vdesc when terminating an ongoing transfer. This will ensure that the vdesc is present in the desc_terminated list The descriptor will be freed later in desc_free_list(). This fixes the memory leaks which can happen when terminating an ongoing transfer. | ||||
CVE-2023-53013 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ptdma: pt_core_execute_cmd() should use spinlock The interrupt handler (pt_core_irq_handler()) of the ptdma driver can be called from interrupt context. The code flow in this function can lead down to pt_core_execute_cmd() which will attempt to grab a mutex, which is not appropriate in interrupt context and ultimately leads to a kernel panic. The fix here changes this mutex to a spinlock, which has been verified to resolve the issue. | ||||
CVE-2023-53011 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: enable all safety features by default In the original implementation of dwmac5 commit 8bf993a5877e ("net: stmmac: Add support for DWMAC5 and implement Safety Features") all safety features were enabled by default. Later it seems some implementations didn't have support for all the features, so in commit 5ac712dcdfef ("net: stmmac: enable platform specific safety features") the safety_feat_cfg structure was added to the callback and defined for some platforms to selectively enable these safety features. The problem is that only certain platforms were given that software support. If the automotive safety package bit is set in the hardware features register the safety feature callback is called for the platform, and for platforms that didn't get a safety_feat_cfg defined this results in the following NULL pointer dereference: [ 7.933303] Call trace: [ 7.935812] dwmac5_safety_feat_config+0x20/0x170 [stmmac] [ 7.941455] __stmmac_open+0x16c/0x474 [stmmac] [ 7.946117] stmmac_open+0x38/0x70 [stmmac] [ 7.950414] __dev_open+0x100/0x1dc [ 7.954006] __dev_change_flags+0x18c/0x204 [ 7.958297] dev_change_flags+0x24/0x6c [ 7.962237] do_setlink+0x2b8/0xfa4 [ 7.965827] __rtnl_newlink+0x4ec/0x840 [ 7.969766] rtnl_newlink+0x50/0x80 [ 7.973353] rtnetlink_rcv_msg+0x12c/0x374 [ 7.977557] netlink_rcv_skb+0x5c/0x130 [ 7.981500] rtnetlink_rcv+0x18/0x2c [ 7.985172] netlink_unicast+0x2e8/0x340 [ 7.989197] netlink_sendmsg+0x1a8/0x420 [ 7.993222] ____sys_sendmsg+0x218/0x280 [ 7.997249] ___sys_sendmsg+0xac/0x100 [ 8.001103] __sys_sendmsg+0x84/0xe0 [ 8.004776] __arm64_sys_sendmsg+0x24/0x30 [ 8.008983] invoke_syscall+0x48/0x114 [ 8.012840] el0_svc_common.constprop.0+0xcc/0xec [ 8.017665] do_el0_svc+0x38/0xb0 [ 8.021071] el0_svc+0x2c/0x84 [ 8.024212] el0t_64_sync_handler+0xf4/0x120 [ 8.028598] el0t_64_sync+0x190/0x194 Go back to the original behavior, if the automotive safety package is found to be supported in hardware enable all the features unless safety_feat_cfg is passed in saying this particular platform only supports a subset of the features. |