Filtered by vendor Linux Subscriptions
Total 12845 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-35832 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bcachefs: kvfree bch_fs::snapshots in bch2_fs_snapshots_exit bch_fs::snapshots is allocated by kvzalloc in __snapshot_t_mut. It should be freed by kvfree not kfree. Or umount will triger: [ 406.829178 ] BUG: unable to handle page fault for address: ffffe7b487148008 [ 406.830676 ] #PF: supervisor read access in kernel mode [ 406.831643 ] #PF: error_code(0x0000) - not-present page [ 406.832487 ] PGD 0 P4D 0 [ 406.832898 ] Oops: 0000 [#1] PREEMPT SMP PTI [ 406.833512 ] CPU: 2 PID: 1754 Comm: umount Kdump: loaded Tainted: G OE 6.7.0-rc7-custom+ #90 [ 406.834746 ] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 [ 406.835796 ] RIP: 0010:kfree+0x62/0x140 [ 406.836197 ] Code: 80 48 01 d8 0f 82 e9 00 00 00 48 c7 c2 00 00 00 80 48 2b 15 78 9f 1f 01 48 01 d0 48 c1 e8 0c 48 c1 e0 06 48 03 05 56 9f 1f 01 <48> 8b 50 08 48 89 c7 f6 c2 01 0f 85 b0 00 00 00 66 90 48 8b 07 f6 [ 406.837810 ] RSP: 0018:ffffb9d641607e48 EFLAGS: 00010286 [ 406.838213 ] RAX: ffffe7b487148000 RBX: ffffb9d645200000 RCX: ffffb9d641607dc4 [ 406.838738 ] RDX: 000065bb00000000 RSI: ffffffffc0d88b84 RDI: ffffb9d645200000 [ 406.839217 ] RBP: ffff9a4625d00068 R08: 0000000000000001 R09: 0000000000000001 [ 406.839650 ] R10: 0000000000000001 R11: 000000000000001f R12: ffff9a4625d4da80 [ 406.840055 ] R13: ffff9a4625d00000 R14: ffffffffc0e2eb20 R15: 0000000000000000 [ 406.840451 ] FS: 00007f0a264ffb80(0000) GS:ffff9a4e2d500000(0000) knlGS:0000000000000000 [ 406.840851 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 406.841125 ] CR2: ffffe7b487148008 CR3: 000000018c4d2000 CR4: 00000000000006f0 [ 406.841464 ] Call Trace: [ 406.841583 ] <TASK> [ 406.841682 ] ? __die+0x1f/0x70 [ 406.841828 ] ? page_fault_oops+0x159/0x470 [ 406.842014 ] ? fixup_exception+0x22/0x310 [ 406.842198 ] ? exc_page_fault+0x1ed/0x200 [ 406.842382 ] ? asm_exc_page_fault+0x22/0x30 [ 406.842574 ] ? bch2_fs_release+0x54/0x280 [bcachefs] [ 406.842842 ] ? kfree+0x62/0x140 [ 406.842988 ] ? kfree+0x104/0x140 [ 406.843138 ] bch2_fs_release+0x54/0x280 [bcachefs] [ 406.843390 ] kobject_put+0xb7/0x170 [ 406.843552 ] deactivate_locked_super+0x2f/0xa0 [ 406.843756 ] cleanup_mnt+0xba/0x150 [ 406.843917 ] task_work_run+0x59/0xa0 [ 406.844083 ] exit_to_user_mode_prepare+0x197/0x1a0 [ 406.844302 ] syscall_exit_to_user_mode+0x16/0x40 [ 406.844510 ] do_syscall_64+0x4e/0xf0 [ 406.844675 ] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 406.844907 ] RIP: 0033:0x7f0a2664e4fb
CVE-2024-35830 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: tc358743: register v4l2 async device only after successful setup Ensure the device has been setup correctly before registering the v4l2 async device, thus allowing userspace to access.
CVE-2024-35829 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/lima: fix a memleak in lima_heap_alloc When lima_vm_map_bo fails, the resources need to be deallocated, or there will be memleaks.
CVE-2024-35828 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: libertas: fix some memleaks in lbs_allocate_cmd_buffer() In the for statement of lbs_allocate_cmd_buffer(), if the allocation of cmdarray[i].cmdbuf fails, both cmdarray and cmdarray[i].cmdbuf needs to be freed. Otherwise, there will be memleaks in lbs_allocate_cmd_buffer().
CVE-2024-35827 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring/net: fix overflow check in io_recvmsg_mshot_prep() The "controllen" variable is type size_t (unsigned long). Casting it to int could lead to an integer underflow. The check_add_overflow() function considers the type of the destination which is type int. If we add two positive values and the result cannot fit in an integer then that's counted as an overflow. However, if we cast "controllen" to an int and it turns negative, then negative values *can* fit into an int type so there is no overflow. Good: 100 + (unsigned long)-4 = 96 <-- overflow Bad: 100 + (int)-4 = 96 <-- no overflow I deleted the cast of the sizeof() as well. That's not a bug but the cast is unnecessary.
CVE-2024-35823 3 Debian, Linux, Redhat 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more 2025-05-04 5.3 Medium
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers.
CVE-2024-35821 1 Linux 1 Linux Kernel 2025-05-04 7.5 High
In the Linux kernel, the following vulnerability has been resolved: ubifs: Set page uptodate in the correct place Page cache reads are lockless, so setting the freshly allocated page uptodate before we've overwritten it with the data it's supposed to have in it will allow a simultaneous reader to see old data. Move the call to SetPageUptodate into ubifs_write_end(), which is after we copied the new data into the page.
CVE-2024-35816 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firewire: ohci: prevent leak of left-over IRQ on unbind Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ") also removed the call to free_irq() in pci_remove(), leading to a leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove() when unbinding the driver from the device remove_proc_entry: removing non-empty directory 'irq/136', leaking at least 'firewire_ohci' Call Trace: ? remove_proc_entry+0x19c/0x1c0 ? __warn+0x81/0x130 ? remove_proc_entry+0x19c/0x1c0 ? report_bug+0x171/0x1a0 ? console_unlock+0x78/0x120 ? handle_bug+0x3c/0x80 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? remove_proc_entry+0x19c/0x1c0 unregister_irq_proc+0xf4/0x120 free_desc+0x3d/0xe0 ? kfree+0x29f/0x2f0 irq_free_descs+0x47/0x70 msi_domain_free_locked.part.0+0x19d/0x1d0 msi_domain_free_irqs_all_locked+0x81/0xc0 pci_free_msi_irqs+0x12/0x40 pci_disable_msi+0x4c/0x60 pci_remove+0x9d/0xc0 [firewire_ohci 01b483699bebf9cb07a3d69df0aa2bee71db1b26] pci_device_remove+0x37/0xa0 device_release_driver_internal+0x19f/0x200 unbind_store+0xa1/0xb0 remove irq with devm_free_irq() before pci_disable_msi() also remove it in fail_msi: of pci_probe() as this would lead to an identical leak
CVE-2024-35815 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/aio: Check IOCB_AIO_RW before the struct aio_kiocb conversion The first kiocb_set_cancel_fn() argument may point at a struct kiocb that is not embedded inside struct aio_kiocb. With the current code, depending on the compiler, the req->ki_ctx read happens either before the IOCB_AIO_RW test or after that test. Move the req->ki_ctx read such that it is guaranteed that the IOCB_AIO_RW test happens first.
CVE-2024-35813 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: core: Avoid negative index with array access Commit 4d0c8d0aef63 ("mmc: core: Use mrq.sbc in close-ended ffu") assigns prev_idata = idatas[i - 1], but doesn't check that the iterator i is greater than zero. Let's fix this by adding a check.
CVE-2024-35811 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Fix use-after-free bug in brcmf_cfg80211_detach This is the candidate patch of CVE-2023-47233 : https://nvd.nist.gov/vuln/detail/CVE-2023-47233 In brcm80211 driver,it starts with the following invoking chain to start init a timeout worker: ->brcmf_usb_probe ->brcmf_usb_probe_cb ->brcmf_attach ->brcmf_bus_started ->brcmf_cfg80211_attach ->wl_init_priv ->brcmf_init_escan ->INIT_WORK(&cfg->escan_timeout_work, brcmf_cfg80211_escan_timeout_worker); If we disconnect the USB by hotplug, it will call brcmf_usb_disconnect to make cleanup. The invoking chain is : brcmf_usb_disconnect ->brcmf_usb_disconnect_cb ->brcmf_detach ->brcmf_cfg80211_detach ->kfree(cfg); While the timeout woker may still be running. This will cause a use-after-free bug on cfg in brcmf_cfg80211_escan_timeout_worker. Fix it by deleting the timer and canceling the worker in brcmf_cfg80211_detach. [[email protected]: keep timer delete as is and cancel work just before free]
CVE-2024-35795 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix deadlock while reading mqd from debugfs An errant disk backup on my desktop got into debugfs and triggered the following deadlock scenario in the amdgpu debugfs files. The machine also hard-resets immediately after those lines are printed (although I wasn't able to reproduce that part when reading by hand): [ 1318.016074][ T1082] ====================================================== [ 1318.016607][ T1082] WARNING: possible circular locking dependency detected [ 1318.017107][ T1082] 6.8.0-rc7-00015-ge0c8221b72c0 #17 Not tainted [ 1318.017598][ T1082] ------------------------------------------------------ [ 1318.018096][ T1082] tar/1082 is trying to acquire lock: [ 1318.018585][ T1082] ffff98c44175d6a0 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x40/0x80 [ 1318.019084][ T1082] [ 1318.019084][ T1082] but task is already holding lock: [ 1318.020052][ T1082] ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu] [ 1318.020607][ T1082] [ 1318.020607][ T1082] which lock already depends on the new lock. [ 1318.020607][ T1082] [ 1318.022081][ T1082] [ 1318.022081][ T1082] the existing dependency chain (in reverse order) is: [ 1318.023083][ T1082] [ 1318.023083][ T1082] -> #2 (reservation_ww_class_mutex){+.+.}-{3:3}: [ 1318.024114][ T1082] __ww_mutex_lock.constprop.0+0xe0/0x12f0 [ 1318.024639][ T1082] ww_mutex_lock+0x32/0x90 [ 1318.025161][ T1082] dma_resv_lockdep+0x18a/0x330 [ 1318.025683][ T1082] do_one_initcall+0x6a/0x350 [ 1318.026210][ T1082] kernel_init_freeable+0x1a3/0x310 [ 1318.026728][ T1082] kernel_init+0x15/0x1a0 [ 1318.027242][ T1082] ret_from_fork+0x2c/0x40 [ 1318.027759][ T1082] ret_from_fork_asm+0x11/0x20 [ 1318.028281][ T1082] [ 1318.028281][ T1082] -> #1 (reservation_ww_class_acquire){+.+.}-{0:0}: [ 1318.029297][ T1082] dma_resv_lockdep+0x16c/0x330 [ 1318.029790][ T1082] do_one_initcall+0x6a/0x350 [ 1318.030263][ T1082] kernel_init_freeable+0x1a3/0x310 [ 1318.030722][ T1082] kernel_init+0x15/0x1a0 [ 1318.031168][ T1082] ret_from_fork+0x2c/0x40 [ 1318.031598][ T1082] ret_from_fork_asm+0x11/0x20 [ 1318.032011][ T1082] [ 1318.032011][ T1082] -> #0 (&mm->mmap_lock){++++}-{3:3}: [ 1318.032778][ T1082] __lock_acquire+0x14bf/0x2680 [ 1318.033141][ T1082] lock_acquire+0xcd/0x2c0 [ 1318.033487][ T1082] __might_fault+0x58/0x80 [ 1318.033814][ T1082] amdgpu_debugfs_mqd_read+0x103/0x250 [amdgpu] [ 1318.034181][ T1082] full_proxy_read+0x55/0x80 [ 1318.034487][ T1082] vfs_read+0xa7/0x360 [ 1318.034788][ T1082] ksys_read+0x70/0xf0 [ 1318.035085][ T1082] do_syscall_64+0x94/0x180 [ 1318.035375][ T1082] entry_SYSCALL_64_after_hwframe+0x46/0x4e [ 1318.035664][ T1082] [ 1318.035664][ T1082] other info that might help us debug this: [ 1318.035664][ T1082] [ 1318.036487][ T1082] Chain exists of: [ 1318.036487][ T1082] &mm->mmap_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex [ 1318.036487][ T1082] [ 1318.037310][ T1082] Possible unsafe locking scenario: [ 1318.037310][ T1082] [ 1318.037838][ T1082] CPU0 CPU1 [ 1318.038101][ T1082] ---- ---- [ 1318.038350][ T1082] lock(reservation_ww_class_mutex); [ 1318.038590][ T1082] lock(reservation_ww_class_acquire); [ 1318.038839][ T1082] lock(reservation_ww_class_mutex); [ 1318.039083][ T1082] rlock(&mm->mmap_lock); [ 1318.039328][ T1082] [ 1318.039328][ T1082] *** DEADLOCK *** [ 1318.039328][ T1082] [ 1318.040029][ T1082] 1 lock held by tar/1082: [ 1318.040259][ T1082] #0: ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu] [ 1318.040560][ T1082] [ 1318.040560][ T1082] stack backtrace: [ ---truncated---
CVE-2024-35792 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: rk3288 - Fix use after free in unprepare The unprepare call must be carried out before the finalize call as the latter can free the request.
CVE-2024-35786 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/nouveau: fix stale locked mutex in nouveau_gem_ioctl_pushbuf If VM_BIND is enabled on the client the legacy submission ioctl can't be used, however if a client tries to do so regardless it will return an error. In this case the clients mutex remained unlocked leading to a deadlock inside nouveau_drm_postclose or any other nouveau ioctl call.
CVE-2024-35785 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tee: optee: Fix kernel panic caused by incorrect error handling The error path while failing to register devices on the TEE bus has a bug leading to kernel panic as follows: [ 15.398930] Unable to handle kernel paging request at virtual address ffff07ed00626d7c [ 15.406913] Mem abort info: [ 15.409722] ESR = 0x0000000096000005 [ 15.413490] EC = 0x25: DABT (current EL), IL = 32 bits [ 15.418814] SET = 0, FnV = 0 [ 15.421878] EA = 0, S1PTW = 0 [ 15.425031] FSC = 0x05: level 1 translation fault [ 15.429922] Data abort info: [ 15.432813] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 15.438310] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 15.443372] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 15.448697] swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000d9e3e000 [ 15.455413] [ffff07ed00626d7c] pgd=1800000bffdf9003, p4d=1800000bffdf9003, pud=0000000000000000 [ 15.464146] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP Commit 7269cba53d90 ("tee: optee: Fix supplicant based device enumeration") lead to the introduction of this bug. So fix it appropriately.
CVE-2024-35784 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock with fiemap and extent locking While working on the patchset to remove extent locking I got a lockdep splat with fiemap and pagefaulting with my new extent lock replacement lock. This deadlock exists with our normal code, we just don't have lockdep annotations with the extent locking so we've never noticed it. Since we're copying the fiemap extent to user space on every iteration we have the chance of pagefaulting. Because we hold the extent lock for the entire range we could mkwrite into a range in the file that we have mmap'ed. This would deadlock with the following stack trace [<0>] lock_extent+0x28d/0x2f0 [<0>] btrfs_page_mkwrite+0x273/0x8a0 [<0>] do_page_mkwrite+0x50/0xb0 [<0>] do_fault+0xc1/0x7b0 [<0>] __handle_mm_fault+0x2fa/0x460 [<0>] handle_mm_fault+0xa4/0x330 [<0>] do_user_addr_fault+0x1f4/0x800 [<0>] exc_page_fault+0x7c/0x1e0 [<0>] asm_exc_page_fault+0x26/0x30 [<0>] rep_movs_alternative+0x33/0x70 [<0>] _copy_to_user+0x49/0x70 [<0>] fiemap_fill_next_extent+0xc8/0x120 [<0>] emit_fiemap_extent+0x4d/0xa0 [<0>] extent_fiemap+0x7f8/0xad0 [<0>] btrfs_fiemap+0x49/0x80 [<0>] __x64_sys_ioctl+0x3e1/0xb50 [<0>] do_syscall_64+0x94/0x1a0 [<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 I wrote an fstest to reproduce this deadlock without my replacement lock and verified that the deadlock exists with our existing locking. To fix this simply don't take the extent lock for the entire duration of the fiemap. This is safe in general because we keep track of where we are when we're searching the tree, so if an ordered extent updates in the middle of our fiemap call we'll still emit the correct extents because we know what offset we were on before. The only place we maintain the lock is searching delalloc. Since the delalloc stuff can change during writeback we want to lock the extent range so we have a consistent view of delalloc at the time we're checking to see if we need to set the delalloc flag. With this patch applied we no longer deadlock with my testcase.
CVE-2024-35247 1 Linux 1 Linux Kernel 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fpga: region: add owner module and take its refcount The current implementation of the fpga region assumes that the low-level module registers a driver for the parent device and uses its owner pointer to take the module's refcount. This approach is problematic since it can lead to a null pointer dereference while attempting to get the region during programming if the parent device does not have a driver. To address this problem, add a module owner pointer to the fpga_region struct and use it to take the module's refcount. Modify the functions for registering a region to take an additional owner module parameter and rename them to avoid conflicts. Use the old function names for helper macros that automatically set the module that registers the region as the owner. This ensures compatibility with existing low-level control modules and reduces the chances of registering a region without setting the owner. Also, update the documentation to keep it consistent with the new interface for registering an fpga region.
CVE-2024-34030 1 Linux 1 Linux Kernel 2025-05-04 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: of_property: Return error for int_map allocation failure Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a NULL pointer dereference in this case. [bhelgaas: commit log]
CVE-2024-34027 1 Linux 1 Linux Kernel 2025-05-04 7 High
In the Linux kernel, the following vulnerability has been resolved: f2fs: compress: fix to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock It needs to cover {reserve,release}_compress_blocks() w/ cp_rwsem lock to avoid racing with checkpoint, otherwise, filesystem metadata including blkaddr in dnode, inode fields and .total_valid_block_count may be corrupted after SPO case.
CVE-2024-27437 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2025-05-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Disable auto-enable of exclusive INTx IRQ Currently for devices requiring masking at the irqchip for INTx, ie. devices without DisINTx support, the IRQ is enabled in request_irq() and subsequently disabled as necessary to align with the masked status flag. This presents a window where the interrupt could fire between these events, resulting in the IRQ incrementing the disable depth twice. This would be unrecoverable for a user since the masked flag prevents nested enables through vfio. Instead, invert the logic using IRQF_NO_AUTOEN such that exclusive INTx is never auto-enabled, then unmask as required.