Filtered by vendor Debian
Subscriptions
Total
10015 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-38146 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: net: openvswitch: Fix the dead loop of MPLS parse The unexpected MPLS packet may not end with the bottom label stack. When there are many stacks, The label count value has wrapped around. A dead loop occurs, soft lockup/CPU stuck finally. stack backtrace: UBSAN: array-index-out-of-bounds in /build/linux-0Pa0xK/linux-5.15.0/net/openvswitch/flow.c:662:26 index -1 is out of range for type '__be32 [3]' CPU: 34 PID: 0 Comm: swapper/34 Kdump: loaded Tainted: G OE 5.15.0-121-generic #131-Ubuntu Hardware name: Dell Inc. PowerEdge C6420/0JP9TF, BIOS 2.12.2 07/14/2021 Call Trace: <IRQ> show_stack+0x52/0x5c dump_stack_lvl+0x4a/0x63 dump_stack+0x10/0x16 ubsan_epilogue+0x9/0x36 __ubsan_handle_out_of_bounds.cold+0x44/0x49 key_extract_l3l4+0x82a/0x840 [openvswitch] ? kfree_skbmem+0x52/0xa0 key_extract+0x9c/0x2b0 [openvswitch] ovs_flow_key_extract+0x124/0x350 [openvswitch] ovs_vport_receive+0x61/0xd0 [openvswitch] ? kernel_init_free_pages.part.0+0x4a/0x70 ? get_page_from_freelist+0x353/0x540 netdev_port_receive+0xc4/0x180 [openvswitch] ? netdev_port_receive+0x180/0x180 [openvswitch] netdev_frame_hook+0x1f/0x40 [openvswitch] __netif_receive_skb_core.constprop.0+0x23a/0xf00 __netif_receive_skb_list_core+0xfa/0x240 netif_receive_skb_list_internal+0x18e/0x2a0 napi_complete_done+0x7a/0x1c0 bnxt_poll+0x155/0x1c0 [bnxt_en] __napi_poll+0x30/0x180 net_rx_action+0x126/0x280 ? bnxt_msix+0x67/0x80 [bnxt_en] handle_softirqs+0xda/0x2d0 irq_exit_rcu+0x96/0xc0 common_interrupt+0x8e/0xa0 </IRQ> | ||||
| CVE-2025-38202 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Check rcu_read_lock_trace_held() in bpf_map_lookup_percpu_elem() bpf_map_lookup_percpu_elem() helper is also available for sleepable bpf program. When BPF JIT is disabled or under 32-bit host, bpf_map_lookup_percpu_elem() will not be inlined. Using it in a sleepable bpf program will trigger the warning in bpf_map_lookup_percpu_elem(), because the bpf program only holds rcu_read_lock_trace lock. Therefore, add the missed check. | ||||
| CVE-2025-38085 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix huge_pmd_unshare() vs GUP-fast race huge_pmd_unshare() drops a reference on a page table that may have previously been shared across processes, potentially turning it into a normal page table used in another process in which unrelated VMAs can afterwards be installed. If this happens in the middle of a concurrent gup_fast(), gup_fast() could end up walking the page tables of another process. While I don't see any way in which that immediately leads to kernel memory corruption, it is really weird and unexpected. Fix it with an explicit broadcast IPI through tlb_remove_table_sync_one(), just like we do in khugepaged when removing page tables for a THP collapse. | ||||
| CVE-2025-38084 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: unshare page tables during VMA split, not before Currently, __split_vma() triggers hugetlb page table unsharing through vm_ops->may_split(). This happens before the VMA lock and rmap locks are taken - which is too early, it allows racing VMA-locked page faults in our process and racing rmap walks from other processes to cause page tables to be shared again before we actually perform the split. Fix it by explicitly calling into the hugetlb unshare logic from __split_vma() in the same place where THP splitting also happens. At that point, both the VMA and the rmap(s) are write-locked. An annoying detail is that we can now call into the helper hugetlb_unshare_pmds() from two different locking contexts: 1. from hugetlb_split(), holding: - mmap lock (exclusively) - VMA lock - file rmap lock (exclusively) 2. hugetlb_unshare_all_pmds(), which I think is designed to be able to call us with only the mmap lock held (in shared mode), but currently only runs while holding mmap lock (exclusively) and VMA lock Backporting note: This commit fixes a racy protection that was introduced in commit b30c14cd6102 ("hugetlb: unshare some PMDs when splitting VMAs"); that commit claimed to fix an issue introduced in 5.13, but it should actually also go all the way back. [[email protected]: v2] | ||||
| CVE-2025-38203 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: jfs: Fix null-ptr-deref in jfs_ioc_trim [ Syzkaller Report ] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000087: 0000 [#1 KASAN: null-ptr-deref in range [0x0000000000000438-0x000000000000043f] CPU: 2 UID: 0 PID: 10614 Comm: syz-executor.0 Not tainted 6.13.0-rc6-gfbfd64d25c7a-dirty #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Sched_ext: serialise (enabled+all), task: runnable_at=-30ms RIP: 0010:jfs_ioc_trim+0x34b/0x8f0 Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93 90 82 fe ff 4c 89 ff 31 f6 RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206 RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001 RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000 R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438 FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die_body+0x61/0xb0 ? die_addr+0xb1/0xe0 ? exc_general_protection+0x333/0x510 ? asm_exc_general_protection+0x26/0x30 ? jfs_ioc_trim+0x34b/0x8f0 jfs_ioctl+0x3c8/0x4f0 ? __pfx_jfs_ioctl+0x10/0x10 ? __pfx_jfs_ioctl+0x10/0x10 __se_sys_ioctl+0x269/0x350 ? __pfx___se_sys_ioctl+0x10/0x10 ? do_syscall_64+0xfb/0x210 do_syscall_64+0xee/0x210 ? syscall_exit_to_user_mode+0x1e0/0x330 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fe51f4903ad Code: c3 e8 a7 2b 00 00 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d RSP: 002b:00007fe5202250c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fe51f5cbf80 RCX: 00007fe51f4903ad RDX: 0000000020000680 RSI: 00000000c0185879 RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe520225640 R13: 000000000000000e R14: 00007fe51f44fca0 R15: 00007fe52021d000 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:jfs_ioc_trim+0x34b/0x8f0 Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93 90 82 fe ff 4c 89 ff 31 f6 RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206 RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001 RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000 R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438 FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Kernel panic - not syncing: Fatal exception [ Analysis ] We believe that we have found a concurrency bug in the `fs/jfs` module that results in a null pointer dereference. There is a closely related issue which has been fixed: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6c1b3599b2feb5c7291f5ac3a36e5fa7cedb234 ... but, unfortunately, the accepted patch appears to still be susceptible to a null pointer dereference under some interleavings. To trigger the bug, we think that `JFS_SBI(ipbmap->i_sb)->bmap` is set to NULL in `dbFreeBits` and then dereferenced in `jfs_ioc_trim`. This bug manifests quite rarely under normal circumstances, but is triggereable from a syz-program. | ||||
| CVE-2025-38206 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: exfat: fix double free in delayed_free The double free could happen in the following path. exfat_create_upcase_table() exfat_create_upcase_table() : return error exfat_free_upcase_table() : free ->vol_utbl exfat_load_default_upcase_table : return error exfat_kill_sb() delayed_free() exfat_free_upcase_table() <--------- double free This patch set ->vol_util as NULL after freeing it. | ||||
| CVE-2025-38211 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/iwcm: Fix use-after-free of work objects after cm_id destruction The commit 59c68ac31e15 ("iw_cm: free cm_id resources on the last deref") simplified cm_id resource management by freeing cm_id once all references to the cm_id were removed. The references are removed either upon completion of iw_cm event handlers or when the application destroys the cm_id. This commit introduced the use-after-free condition where cm_id_private object could still be in use by event handler works during the destruction of cm_id. The commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to destroying CM IDs") addressed this use-after- free by flushing all pending works at the cm_id destruction. However, still another use-after-free possibility remained. It happens with the work objects allocated for each cm_id_priv within alloc_work_entries() during cm_id creation, and subsequently freed in dealloc_work_entries() once all references to the cm_id are removed. If the cm_id's last reference is decremented in the event handler work, the work object for the work itself gets removed, and causes the use- after-free BUG below: BUG: KASAN: slab-use-after-free in __pwq_activate_work+0x1ff/0x250 Read of size 8 at addr ffff88811f9cf800 by task kworker/u16:1/147091 CPU: 2 UID: 0 PID: 147091 Comm: kworker/u16:1 Not tainted 6.15.0-rc2+ #27 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014 Workqueue: 0x0 (iw_cm_wq) Call Trace: <TASK> dump_stack_lvl+0x6a/0x90 print_report+0x174/0x554 ? __virt_addr_valid+0x208/0x430 ? __pwq_activate_work+0x1ff/0x250 kasan_report+0xae/0x170 ? __pwq_activate_work+0x1ff/0x250 __pwq_activate_work+0x1ff/0x250 pwq_dec_nr_in_flight+0x8c5/0xfb0 process_one_work+0xc11/0x1460 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x16c/0x240 worker_thread+0x5ef/0xfd0 ? __pfx_worker_thread+0x10/0x10 kthread+0x3b0/0x770 ? __pfx_kthread+0x10/0x10 ? rcu_is_watching+0x11/0xb0 ? _raw_spin_unlock_irq+0x24/0x50 ? rcu_is_watching+0x11/0xb0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 147416: kasan_save_stack+0x2c/0x50 kasan_save_track+0x10/0x30 __kasan_kmalloc+0xa6/0xb0 alloc_work_entries+0xa9/0x260 [iw_cm] iw_cm_connect+0x23/0x4a0 [iw_cm] rdma_connect_locked+0xbfd/0x1920 [rdma_cm] nvme_rdma_cm_handler+0x8e5/0x1b60 [nvme_rdma] cma_cm_event_handler+0xae/0x320 [rdma_cm] cma_work_handler+0x106/0x1b0 [rdma_cm] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 Freed by task 147091: kasan_save_stack+0x2c/0x50 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kfree+0x13a/0x4b0 dealloc_work_entries+0x125/0x1f0 [iw_cm] iwcm_deref_id+0x6f/0xa0 [iw_cm] cm_work_handler+0x136/0x1ba0 [iw_cm] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 Last potentially related work creation: kasan_save_stack+0x2c/0x50 kasan_record_aux_stack+0xa3/0xb0 __queue_work+0x2ff/0x1390 queue_work_on+0x67/0xc0 cm_event_handler+0x46a/0x820 [iw_cm] siw_cm_upcall+0x330/0x650 [siw] siw_cm_work_handler+0x6b9/0x2b20 [siw] process_one_work+0x84f/0x1460 worker_thread+0x5ef/0xfd0 kthread+0x3b0/0x770 ret_from_fork+0x30/0x70 ret_from_fork_asm+0x1a/0x30 This BUG is reproducible by repeating the blktests test case nvme/061 for the rdma transport and the siw driver. To avoid the use-after-free of cm_id_private work objects, ensure that the last reference to the cm_id is decremented not in the event handler works, but in the cm_id destruction context. For that purpose, mo ---truncated--- | ||||
| CVE-2025-38212 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ipc: fix to protect IPCS lookups using RCU syzbot reported that it discovered a use-after-free vulnerability, [0] [0]: https://lore.kernel.org/all/[email protected]/ idr_for_each() is protected by rwsem, but this is not enough. If it is not protected by RCU read-critical region, when idr_for_each() calls radix_tree_node_free() through call_rcu() to free the radix_tree_node structure, the node will be freed immediately, and when reading the next node in radix_tree_for_each_slot(), the already freed memory may be read. Therefore, we need to add code to make sure that idr_for_each() is protected within the RCU read-critical region when we call it in shm_destroy_orphaned(). | ||||
| CVE-2025-38214 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fbdev: Fix fb_set_var to prevent null-ptr-deref in fb_videomode_to_var If fb_add_videomode() in fb_set_var() fails to allocate memory for fb_videomode, later it may lead to a null-ptr dereference in fb_videomode_to_var(), as the fb_info is registered while not having the mode in modelist that is expected to be there, i.e. the one that is described in fb_info->var. ================================================================ general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901 Call Trace: display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929 fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071 resize_screen drivers/tty/vt/vt.c:1176 [inline] vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263 fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720 fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776 do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128 fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203 vfs_ioctl fs/ioctl.c:48 [inline] __do_sys_ioctl fs/ioctl.c:753 [inline] __se_sys_ioctl fs/ioctl.c:739 [inline] __x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x67/0xd1 ================================================================ The reason is that fb_info->var is being modified in fb_set_var(), and then fb_videomode_to_var() is called. If it fails to add the mode to fb_info->modelist, fb_set_var() returns error, but does not restore the old value of fb_info->var. Restore fb_info->var on failure the same way it is done earlier in the function. Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2025-38157 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k_htc: Abort software beacon handling if disabled A malicious USB device can send a WMI_SWBA_EVENTID event from an ath9k_htc-managed device before beaconing has been enabled. This causes a device-by-zero error in the driver, leading to either a crash or an out of bounds read. Prevent this by aborting the handling in ath9k_htc_swba() if beacons are not enabled. | ||||
| CVE-2025-38154 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Avoid using sk_socket after free when sending The sk->sk_socket is not locked or referenced in backlog thread, and during the call to skb_send_sock(), there is a race condition with the release of sk_socket. All types of sockets(tcp/udp/unix/vsock) will be affected. Race conditions: ''' CPU0 CPU1 backlog::skb_send_sock sendmsg_unlocked sock_sendmsg sock_sendmsg_nosec close(fd): ... ops->release() -> sock_map_close() sk_socket->ops = NULL free(socket) sock->ops->sendmsg ^ panic here ''' The ref of psock become 0 after sock_map_close() executed. ''' void sock_map_close() { ... if (likely(psock)) { ... // !! here we remove psock and the ref of psock become 0 sock_map_remove_links(sk, psock) psock = sk_psock_get(sk); if (unlikely(!psock)) goto no_psock; <=== Control jumps here via goto ... cancel_delayed_work_sync(&psock->work); <=== not executed sk_psock_put(sk, psock); ... } ''' Based on the fact that we already wait for the workqueue to finish in sock_map_close() if psock is held, we simply increase the psock reference count to avoid race conditions. With this patch, if the backlog thread is running, sock_map_close() will wait for the backlog thread to complete and cancel all pending work. If no backlog running, any pending work that hasn't started by then will fail when invoked by sk_psock_get(), as the psock reference count have been zeroed, and sk_psock_drop() will cancel all jobs via cancel_delayed_work_sync(). In summary, we require synchronization to coordinate the backlog thread and close() thread. The panic I catched: ''' Workqueue: events sk_psock_backlog RIP: 0010:sock_sendmsg+0x21d/0x440 RAX: 0000000000000000 RBX: ffffc9000521fad8 RCX: 0000000000000001 ... Call Trace: <TASK> ? die_addr+0x40/0xa0 ? exc_general_protection+0x14c/0x230 ? asm_exc_general_protection+0x26/0x30 ? sock_sendmsg+0x21d/0x440 ? sock_sendmsg+0x3e0/0x440 ? __pfx_sock_sendmsg+0x10/0x10 __skb_send_sock+0x543/0xb70 sk_psock_backlog+0x247/0xb80 ... ''' | ||||
| CVE-2025-38153 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: net: usb: aqc111: fix error handling of usbnet read calls Syzkaller, courtesy of syzbot, identified an error (see report [1]) in aqc111 driver, caused by incomplete sanitation of usb read calls' results. This problem is quite similar to the one fixed in commit 920a9fa27e78 ("net: asix: add proper error handling of usb read errors"). For instance, usbnet_read_cmd() may read fewer than 'size' bytes, even if the caller expected the full amount, and aqc111_read_cmd() will not check its result properly. As [1] shows, this may lead to MAC address in aqc111_bind() being only partly initialized, triggering KMSAN warnings. Fix the issue by verifying that the number of bytes read is as expected and not less. [1] Partial syzbot report: BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline] BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 is_valid_ether_addr include/linux/etherdevice.h:208 [inline] usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] really_probe+0x4d1/0xd90 drivers/base/dd.c:658 __driver_probe_device+0x268/0x380 drivers/base/dd.c:800 ... Uninit was stored to memory at: dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582 __dev_addr_set include/linux/netdevice.h:4874 [inline] eth_hw_addr_set include/linux/etherdevice.h:325 [inline] aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 ... Uninit was stored to memory at: ether_addr_copy include/linux/etherdevice.h:305 [inline] aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline] aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396 call_driver_probe drivers/base/dd.c:-1 [inline] ... Local variable buf.i created at: aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline] aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713 usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 | ||||
| CVE-2025-38151 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Fix hang when cma_netevent_callback fails to queue_work The cited commit fixed a crash when cma_netevent_callback was called for a cma_id while work on that id from a previous call had not yet started. The work item was re-initialized in the second call, which corrupted the work item currently in the work queue. However, it left a problem when queue_work fails (because the item is still pending in the work queue from a previous call). In this case, cma_id_put (which is called in the work handler) is therefore not called. This results in a userspace process hang (zombie process). Fix this by calling cma_id_put() if queue_work fails. | ||||
| CVE-2025-38148 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: phy: mscc: Fix memory leak when using one step timestamping Fix memory leak when running one-step timestamping. When running one-step sync timestamping, the HW is configured to insert the TX time into the frame, so there is no reason to keep the skb anymore. As in this case the HW will never generate an interrupt to say that the frame was timestamped, then the frame will never released. Fix this by freeing the frame in case of one-step timestamping. | ||||
| CVE-2025-38147 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: calipso: Don't call calipso functions for AF_INET sk. syzkaller reported a null-ptr-deref in txopt_get(). [0] The offset 0x70 was of struct ipv6_txoptions in struct ipv6_pinfo, so struct ipv6_pinfo was NULL there. However, this never happens for IPv6 sockets as inet_sk(sk)->pinet6 is always set in inet6_create(), meaning the socket was not IPv6 one. The root cause is missing validation in netlbl_conn_setattr(). netlbl_conn_setattr() switches branches based on struct sockaddr.sa_family, which is passed from userspace. However, netlbl_conn_setattr() does not check if the address family matches the socket. The syzkaller must have called connect() for an IPv6 address on an IPv4 socket. We have a proper validation in tcp_v[46]_connect(), but security_socket_connect() is called in the earlier stage. Let's copy the validation to netlbl_conn_setattr(). [0]: Oops: general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 2 UID: 0 PID: 12928 Comm: syz.9.1677 Not tainted 6.12.0 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:txopt_get include/net/ipv6.h:390 [inline] RIP: 0010: Code: 02 00 00 49 8b ac 24 f8 02 00 00 e8 84 69 2a fd e8 ff 00 16 fd 48 8d 7d 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 53 02 00 00 48 8b 6d 70 48 85 ed 0f 84 ab 01 00 RSP: 0018:ffff88811b8afc48 EFLAGS: 00010212 RAX: dffffc0000000000 RBX: 1ffff11023715f8a RCX: ffffffff841ab00c RDX: 000000000000000e RSI: ffffc90007d9e000 RDI: 0000000000000070 RBP: 0000000000000000 R08: ffffed1023715f9d R09: ffffed1023715f9e R10: ffffed1023715f9d R11: 0000000000000003 R12: ffff888123075f00 R13: ffff88810245bd80 R14: ffff888113646780 R15: ffff888100578a80 FS: 00007f9019bd7640(0000) GS:ffff8882d2d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f901b927bac CR3: 0000000104788003 CR4: 0000000000770ef0 PKRU: 80000000 Call Trace: <TASK> calipso_sock_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:557 netlbl_conn_setattr+0x10c/0x280 net/netlabel/netlabel_kapi.c:1177 selinux_netlbl_socket_connect_helper+0xd3/0x1b0 security/selinux/netlabel.c:569 selinux_netlbl_socket_connect_locked security/selinux/netlabel.c:597 [inline] selinux_netlbl_socket_connect+0xb6/0x100 security/selinux/netlabel.c:615 selinux_socket_connect+0x5f/0x80 security/selinux/hooks.c:4931 security_socket_connect+0x50/0xa0 security/security.c:4598 __sys_connect_file+0xa4/0x190 net/socket.c:2067 __sys_connect+0x12c/0x170 net/socket.c:2088 __do_sys_connect net/socket.c:2098 [inline] __se_sys_connect net/socket.c:2095 [inline] __x64_sys_connect+0x73/0xb0 net/socket.c:2095 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xaa/0x1b0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f901b61a12d Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f9019bd6fa8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a RAX: ffffffffffffffda RBX: 00007f901b925fa0 RCX: 00007f901b61a12d RDX: 000000000000001c RSI: 0000200000000140 RDI: 0000000000000003 RBP: 00007f901b701505 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f901b5b62a0 R15: 00007f9019bb7000 </TASK> Modules linked in: | ||||
| CVE-2025-38173 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: crypto: marvell/cesa - Handle zero-length skcipher requests Do not access random memory for zero-length skcipher requests. Just return 0. | ||||
| CVE-2025-38170 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: arm64/fpsimd: Discard stale CPU state when handling SME traps The logic for handling SME traps manipulates saved FPSIMD/SVE/SME state incorrectly, and a race with preemption can result in a task having TIF_SME set and TIF_FOREIGN_FPSTATE clear even though the live CPU state is stale (e.g. with SME traps enabled). This can result in warnings from do_sme_acc() where SME traps are not expected while TIF_SME is set: | /* With TIF_SME userspace shouldn't generate any traps */ | if (test_and_set_thread_flag(TIF_SME)) | WARN_ON(1); This is very similar to the SVE issue we fixed in commit: 751ecf6afd6568ad ("arm64/sve: Discard stale CPU state when handling SVE traps") The race can occur when the SME trap handler is preempted before and after manipulating the saved FPSIMD/SVE/SME state, starting and ending on the same CPU, e.g. | void do_sme_acc(unsigned long esr, struct pt_regs *regs) | { | // Trap on CPU 0 with TIF_SME clear, SME traps enabled | // task->fpsimd_cpu is 0. | // per_cpu_ptr(&fpsimd_last_state, 0) is task. | | ... | | // Preempted; migrated from CPU 0 to CPU 1. | // TIF_FOREIGN_FPSTATE is set. | | get_cpu_fpsimd_context(); | | /* With TIF_SME userspace shouldn't generate any traps */ | if (test_and_set_thread_flag(TIF_SME)) | WARN_ON(1); | | if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) { | unsigned long vq_minus_one = | sve_vq_from_vl(task_get_sme_vl(current)) - 1; | sme_set_vq(vq_minus_one); | | fpsimd_bind_task_to_cpu(); | } | | put_cpu_fpsimd_context(); | | // Preempted; migrated from CPU 1 to CPU 0. | // task->fpsimd_cpu is still 0 | // If per_cpu_ptr(&fpsimd_last_state, 0) is still task then: | // - Stale HW state is reused (with SME traps enabled) | // - TIF_FOREIGN_FPSTATE is cleared | // - A return to userspace skips HW state restore | } Fix the case where the state is not live and TIF_FOREIGN_FPSTATE is set by calling fpsimd_flush_task_state() to detach from the saved CPU state. This ensures that a subsequent context switch will not reuse the stale CPU state, and will instead set TIF_FOREIGN_FPSTATE, forcing the new state to be reloaded from memory prior to a return to userspace. Note: this was originallly posted as [1]. [ Rutland: rewrite commit message ] | ||||
| CVE-2025-38167 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: handle hdr_first_de() return value The hdr_first_de() function returns a pointer to a struct NTFS_DE. This pointer may be NULL. To handle the NULL error effectively, it is important to implement an error handler. This will help manage potential errors consistently. Additionally, error handling for the return value already exists at other points where this function is called. Found by Linux Verification Center (linuxtesting.org) with SVACE. | ||||
| CVE-2025-38166 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: fix ktls panic with sockmap [ 2172.936997] ------------[ cut here ]------------ [ 2172.936999] kernel BUG at lib/iov_iter.c:629! ...... [ 2172.944996] PKRU: 55555554 [ 2172.945155] Call Trace: [ 2172.945299] <TASK> [ 2172.945428] ? die+0x36/0x90 [ 2172.945601] ? do_trap+0xdd/0x100 [ 2172.945795] ? iov_iter_revert+0x178/0x180 [ 2172.946031] ? iov_iter_revert+0x178/0x180 [ 2172.946267] ? do_error_trap+0x7d/0x110 [ 2172.946499] ? iov_iter_revert+0x178/0x180 [ 2172.946736] ? exc_invalid_op+0x50/0x70 [ 2172.946961] ? iov_iter_revert+0x178/0x180 [ 2172.947197] ? asm_exc_invalid_op+0x1a/0x20 [ 2172.947446] ? iov_iter_revert+0x178/0x180 [ 2172.947683] ? iov_iter_revert+0x5c/0x180 [ 2172.947913] tls_sw_sendmsg_locked.isra.0+0x794/0x840 [ 2172.948206] tls_sw_sendmsg+0x52/0x80 [ 2172.948420] ? inet_sendmsg+0x1f/0x70 [ 2172.948634] __sys_sendto+0x1cd/0x200 [ 2172.948848] ? find_held_lock+0x2b/0x80 [ 2172.949072] ? syscall_trace_enter+0x140/0x270 [ 2172.949330] ? __lock_release.isra.0+0x5e/0x170 [ 2172.949595] ? find_held_lock+0x2b/0x80 [ 2172.949817] ? syscall_trace_enter+0x140/0x270 [ 2172.950211] ? lockdep_hardirqs_on_prepare+0xda/0x190 [ 2172.950632] ? ktime_get_coarse_real_ts64+0xc2/0xd0 [ 2172.951036] __x64_sys_sendto+0x24/0x30 [ 2172.951382] do_syscall_64+0x90/0x170 ...... After calling bpf_exec_tx_verdict(), the size of msg_pl->sg may increase, e.g., when the BPF program executes bpf_msg_push_data(). If the BPF program sets cork_bytes and sg.size is smaller than cork_bytes, it will return -ENOSPC and attempt to roll back to the non-zero copy logic. However, during rollback, msg->msg_iter is reset, but since msg_pl->sg.size has been increased, subsequent executions will exceed the actual size of msg_iter. ''' iov_iter_revert(&msg->msg_iter, msg_pl->sg.size - orig_size); ''' The changes in this commit are based on the following considerations: 1. When cork_bytes is set, rolling back to non-zero copy logic is pointless and can directly go to zero-copy logic. 2. We can not calculate the correct number of bytes to revert msg_iter. Assume the original data is "abcdefgh" (8 bytes), and after 3 pushes by the BPF program, it becomes 11-byte data: "abc?de?fgh?". Then, we set cork_bytes to 6, which means the first 6 bytes have been processed, and the remaining 5 bytes "?fgh?" will be cached until the length meets the cork_bytes requirement. However, some data in "?fgh?" is not within 'sg->msg_iter' (but in msg_pl instead), especially the data "?" we pushed. So it doesn't seem as simple as just reverting through an offset of msg_iter. 3. For non-TLS sockets in tcp_bpf_sendmsg, when a "cork" situation occurs, the user-space send() doesn't return an error, and the returned length is the same as the input length parameter, even if some data is cached. Additionally, I saw that the current non-zero-copy logic for handling corking is written as: ''' line 1177 else if (ret != -EAGAIN) { if (ret == -ENOSPC) ret = 0; goto send_end; ''' So it's ok to just return 'copied' without error when a "cork" situation occurs. | ||||
| CVE-2025-38165 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix panic when calling skb_linearize The panic can be reproduced by executing the command: ./bench sockmap -c 2 -p 1 -a --rx-verdict-ingress --rx-strp 100000 Then a kernel panic was captured: ''' [ 657.460555] kernel BUG at net/core/skbuff.c:2178! [ 657.462680] Tainted: [W]=WARN [ 657.463287] Workqueue: events sk_psock_backlog ... [ 657.469610] <TASK> [ 657.469738] ? die+0x36/0x90 [ 657.469916] ? do_trap+0x1d0/0x270 [ 657.470118] ? pskb_expand_head+0x612/0xf40 [ 657.470376] ? pskb_expand_head+0x612/0xf40 [ 657.470620] ? do_error_trap+0xa3/0x170 [ 657.470846] ? pskb_expand_head+0x612/0xf40 [ 657.471092] ? handle_invalid_op+0x2c/0x40 [ 657.471335] ? pskb_expand_head+0x612/0xf40 [ 657.471579] ? exc_invalid_op+0x2d/0x40 [ 657.471805] ? asm_exc_invalid_op+0x1a/0x20 [ 657.472052] ? pskb_expand_head+0xd1/0xf40 [ 657.472292] ? pskb_expand_head+0x612/0xf40 [ 657.472540] ? lock_acquire+0x18f/0x4e0 [ 657.472766] ? find_held_lock+0x2d/0x110 [ 657.472999] ? __pfx_pskb_expand_head+0x10/0x10 [ 657.473263] ? __kmalloc_cache_noprof+0x5b/0x470 [ 657.473537] ? __pfx___lock_release.isra.0+0x10/0x10 [ 657.473826] __pskb_pull_tail+0xfd/0x1d20 [ 657.474062] ? __kasan_slab_alloc+0x4e/0x90 [ 657.474707] sk_psock_skb_ingress_enqueue+0x3bf/0x510 [ 657.475392] ? __kasan_kmalloc+0xaa/0xb0 [ 657.476010] sk_psock_backlog+0x5cf/0xd70 [ 657.476637] process_one_work+0x858/0x1a20 ''' The panic originates from the assertion BUG_ON(skb_shared(skb)) in skb_linearize(). A previous commit(see Fixes tag) introduced skb_get() to avoid race conditions between skb operations in the backlog and skb release in the recvmsg path. However, this caused the panic to always occur when skb_linearize is executed. The "--rx-strp 100000" parameter forces the RX path to use the strparser module which aggregates data until it reaches 100KB before calling sockmap logic. The 100KB payload exceeds MAX_MSG_FRAGS, triggering skb_linearize. To fix this issue, just move skb_get into sk_psock_skb_ingress_enqueue. ''' sk_psock_backlog: sk_psock_handle_skb skb_get(skb) <== we move it into 'sk_psock_skb_ingress_enqueue' sk_psock_skb_ingress____________ ↓ | | → sk_psock_skb_ingress_self | sk_psock_skb_ingress_enqueue sk_psock_verdict_apply_________________↑ skb_linearize ''' Note that for verdict_apply path, the skb_get operation is unnecessary so we add 'take_ref' param to control it's behavior. | ||||