Filtered by CWE-125
Total 8027 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2025-37749 1 Redhat 2 Enterprise Linux, Rhel Eus 2025-05-26 6.1 Medium
In the Linux kernel, the following vulnerability has been resolved: net: ppp: Add bound checking for skb data on ppp_sync_txmung Ensure we have enough data in linear buffer from skb before accessing initial bytes. This prevents potential out-of-bounds accesses when processing short packets. When ppp_sync_txmung receives an incoming package with an empty payload: (remote) gef➤ p *(struct pppoe_hdr *) (skb->head + skb->network_header) $18 = { type = 0x1, ver = 0x1, code = 0x0, sid = 0x2, length = 0x0, tag = 0xffff8880371cdb96 } from the skb struct (trimmed) tail = 0x16, end = 0x140, head = 0xffff88803346f400 "4", data = 0xffff88803346f416 ":\377", truesize = 0x380, len = 0x0, data_len = 0x0, mac_len = 0xe, hdr_len = 0x0, it is not safe to access data[2]. [[email protected]: fixed subj typo]
CVE-2025-23133 2025-05-26 6.0 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: update channel list in reg notifier instead reg worker Currently when ath11k gets a new channel list, it will be processed according to the following steps: 1. update new channel list to cfg80211 and queue reg_work. 2. cfg80211 handles new channel list during reg_work. 3. update cfg80211's handled channel list to firmware by ath11k_reg_update_chan_list(). But ath11k will immediately execute step 3 after reg_work is just queued. Since step 2 is asynchronous, cfg80211 may not have completed handling the new channel list, which may leading to an out-of-bounds write error: BUG: KASAN: slab-out-of-bounds in ath11k_reg_update_chan_list Call Trace: ath11k_reg_update_chan_list+0xbfe/0xfe0 [ath11k] kfree+0x109/0x3a0 ath11k_regd_update+0x1cf/0x350 [ath11k] ath11k_regd_update_work+0x14/0x20 [ath11k] process_one_work+0xe35/0x14c0 Should ensure step 2 is completely done before executing step 3. Thus Wen raised patch[1]. When flag NL80211_REGDOM_SET_BY_DRIVER is set, cfg80211 will notify ath11k after step 2 is done. So enable the flag NL80211_REGDOM_SET_BY_DRIVER then cfg80211 will notify ath11k after step 2 is done. At this time, there will be no KASAN bug during the execution of the step 3. [1] https://patchwork.kernel.org/project/linux-wireless/patch/[email protected]/ Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3
CVE-2025-22121 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix out-of-bound read in ext4_xattr_inode_dec_ref_all() There's issue as follows: BUG: KASAN: use-after-free in ext4_xattr_inode_dec_ref_all+0x6ff/0x790 Read of size 4 at addr ffff88807b003000 by task syz-executor.0/15172 CPU: 3 PID: 15172 Comm: syz-executor.0 Call Trace: __dump_stack lib/dump_stack.c:82 [inline] dump_stack+0xbe/0xfd lib/dump_stack.c:123 print_address_description.constprop.0+0x1e/0x280 mm/kasan/report.c:400 __kasan_report.cold+0x6c/0x84 mm/kasan/report.c:560 kasan_report+0x3a/0x50 mm/kasan/report.c:585 ext4_xattr_inode_dec_ref_all+0x6ff/0x790 fs/ext4/xattr.c:1137 ext4_xattr_delete_inode+0x4c7/0xda0 fs/ext4/xattr.c:2896 ext4_evict_inode+0xb3b/0x1670 fs/ext4/inode.c:323 evict+0x39f/0x880 fs/inode.c:622 iput_final fs/inode.c:1746 [inline] iput fs/inode.c:1772 [inline] iput+0x525/0x6c0 fs/inode.c:1758 ext4_orphan_cleanup fs/ext4/super.c:3298 [inline] ext4_fill_super+0x8c57/0xba40 fs/ext4/super.c:5300 mount_bdev+0x355/0x410 fs/super.c:1446 legacy_get_tree+0xfe/0x220 fs/fs_context.c:611 vfs_get_tree+0x8d/0x2f0 fs/super.c:1576 do_new_mount fs/namespace.c:2983 [inline] path_mount+0x119a/0x1ad0 fs/namespace.c:3316 do_mount+0xfc/0x110 fs/namespace.c:3329 __do_sys_mount fs/namespace.c:3540 [inline] __se_sys_mount+0x219/0x2e0 fs/namespace.c:3514 do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Memory state around the buggy address: ffff88807b002f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff88807b002f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff88807b003000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88807b003080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88807b003100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff Above issue happens as ext4_xattr_delete_inode() isn't check xattr is valid if xattr is in inode. To solve above issue call xattr_check_inode() check if xattr if valid in inode. In fact, we can directly verify in ext4_iget_extra_inode(), so that there is no divergent verification.
CVE-2025-22087 1 Redhat 1 Enterprise Linux 2025-05-26 6.6 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix array bounds error with may_goto may_goto uses an additional 8 bytes on the stack, which causes the interpreters[] array to go out of bounds when calculating index by stack_size. 1. If a BPF program is rewritten, re-evaluate the stack size. For non-JIT cases, reject loading directly. 2. For non-JIT cases, calculating interpreters[idx] may still cause out-of-bounds array access, and just warn about it. 3. For jit_requested cases, the execution of bpf_func also needs to be warned. So move the definition of function __bpf_prog_ret0_warn out of the macro definition CONFIG_BPF_JIT_ALWAYS_ON.
CVE-2025-22055 1 Redhat 1 Enterprise Linux 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net: fix geneve_opt length integer overflow struct geneve_opt uses 5 bit length for each single option, which means every vary size option should be smaller than 128 bytes. However, all current related Netlink policies cannot promise this length condition and the attacker can exploit a exact 128-byte size option to *fake* a zero length option and confuse the parsing logic, further achieve heap out-of-bounds read. One example crash log is like below: [ 3.905425] ================================================================== [ 3.905925] BUG: KASAN: slab-out-of-bounds in nla_put+0xa9/0xe0 [ 3.906255] Read of size 124 at addr ffff888005f291cc by task poc/177 [ 3.906646] [ 3.906775] CPU: 0 PID: 177 Comm: poc-oob-read Not tainted 6.1.132 #1 [ 3.907131] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 [ 3.907784] Call Trace: [ 3.907925] <TASK> [ 3.908048] dump_stack_lvl+0x44/0x5c [ 3.908258] print_report+0x184/0x4be [ 3.909151] kasan_report+0xc5/0x100 [ 3.909539] kasan_check_range+0xf3/0x1a0 [ 3.909794] memcpy+0x1f/0x60 [ 3.909968] nla_put+0xa9/0xe0 [ 3.910147] tunnel_key_dump+0x945/0xba0 [ 3.911536] tcf_action_dump_1+0x1c1/0x340 [ 3.912436] tcf_action_dump+0x101/0x180 [ 3.912689] tcf_exts_dump+0x164/0x1e0 [ 3.912905] fw_dump+0x18b/0x2d0 [ 3.913483] tcf_fill_node+0x2ee/0x460 [ 3.914778] tfilter_notify+0xf4/0x180 [ 3.915208] tc_new_tfilter+0xd51/0x10d0 [ 3.918615] rtnetlink_rcv_msg+0x4a2/0x560 [ 3.919118] netlink_rcv_skb+0xcd/0x200 [ 3.919787] netlink_unicast+0x395/0x530 [ 3.921032] netlink_sendmsg+0x3d0/0x6d0 [ 3.921987] __sock_sendmsg+0x99/0xa0 [ 3.922220] __sys_sendto+0x1b7/0x240 [ 3.922682] __x64_sys_sendto+0x72/0x90 [ 3.922906] do_syscall_64+0x5e/0x90 [ 3.923814] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 3.924122] RIP: 0033:0x7e83eab84407 [ 3.924331] Code: 48 89 fa 4c 89 df e8 38 aa 00 00 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 1a 5b c3 0f 1f 84 00 00 00 00 00 48 8b 44 24 10 0f 05 <5b> c3 0f 1f 80 00 00 00 00 83 e2 39 83 faf [ 3.925330] RSP: 002b:00007ffff505e370 EFLAGS: 00000202 ORIG_RAX: 000000000000002c [ 3.925752] RAX: ffffffffffffffda RBX: 00007e83eaafa740 RCX: 00007e83eab84407 [ 3.926173] RDX: 00000000000001a8 RSI: 00007ffff505e3c0 RDI: 0000000000000003 [ 3.926587] RBP: 00007ffff505f460 R08: 00007e83eace1000 R09: 000000000000000c [ 3.926977] R10: 0000000000000000 R11: 0000000000000202 R12: 00007ffff505f3c0 [ 3.927367] R13: 00007ffff505f5c8 R14: 00007e83ead1b000 R15: 00005d4fbbe6dcb8 Fix these issues by enforing correct length condition in related policies.
CVE-2025-22038 1 Linux 1 Linux Kernel 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: validate zero num_subauth before sub_auth is accessed Access psid->sub_auth[psid->num_subauth - 1] without checking if num_subauth is non-zero leads to an out-of-bounds read. This patch adds a validation step to ensure num_subauth != 0 before sub_auth is accessed.
CVE-2023-53034 2025-05-26 6.0 Medium
In the Linux kernel, the following vulnerability has been resolved: ntb_hw_switchtec: Fix shift-out-of-bounds in switchtec_ntb_mw_set_trans There is a kernel API ntb_mw_clear_trans() would pass 0 to both addr and size. This would make xlate_pos negative. [ 23.734156] switchtec switchtec0: MW 0: part 0 addr 0x0000000000000000 size 0x0000000000000000 [ 23.734158] ================================================================================ [ 23.734172] UBSAN: shift-out-of-bounds in drivers/ntb/hw/mscc/ntb_hw_switchtec.c:293:7 [ 23.734418] shift exponent -1 is negative Ensuring xlate_pos is a positive or zero before BIT.
CVE-2024-26952 1 Linux 1 Linux Kernel 2025-05-23 8.1 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix potencial out-of-bounds when buffer offset is invalid I found potencial out-of-bounds when buffer offset fields of a few requests is invalid. This patch set the minimum value of buffer offset field to ->Buffer offset to validate buffer length.
CVE-2024-36477 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tpm_tis_spi: Account for SPI header when allocating TPM SPI xfer buffer The TPM SPI transfer mechanism uses MAX_SPI_FRAMESIZE for computing the maximum transfer length and the size of the transfer buffer. As such, it does not account for the 4 bytes of header that prepends the SPI data frame. This can result in out-of-bounds accesses and was confirmed with KASAN. Introduce SPI_HDRSIZE to account for the header and use to allocate the transfer buffer.
CVE-2022-3256 3 Debian, Fedoraproject, Vim 3 Debian Linux, Fedora, Vim 2025-05-23 7.8 High
Use After Free in GitHub repository vim/vim prior to 9.0.0530.
CVE-2022-31812 2025-05-23 7.5 High
A vulnerability has been identified in SiPass integrated (All versions < V2.95.3.18). Affected server applications contain an out of bounds read past the end of an allocated buffer while checking the integrity of incoming packets. This could allow an unauthenticated remote attacker to create a denial of service condition.
CVE-2025-46716 2025-05-23 5.5 Medium
Sandboxie is a sandbox-based isolation software for 32-bit and 64-bit Windows NT-based operating systems. Starting in version 1.3.0 and prior to version 1.15.12, Api_SetSecureParam fails to sanitize incoming pointers, and implicitly trusts that the pointer the user has passed in is safe to read from. SetRegValue then reads an arbitrary address, which can be a kernel pointer, into a HKLM Security SBIE registry value. This can later be retrieved by API_GET_SECURE_PARAM. Version 1.15.12 fixes the issue.
CVE-2025-4969 1 Redhat 1 Enterprise Linux 2025-05-23 6.5 Medium
A vulnerability was found in the libsoup package. This flaw stems from its failure to correctly verify the termination of multipart HTTP messages. This can allow a remote attacker to send a specially crafted multipart HTTP body, causing the libsoup-consuming server to read beyond its allocated memory boundaries (out-of-bounds read).
CVE-2022-32852 1 Apple 1 Macos 2025-05-22 7.1 High
An out-of-bounds read issue was addressed with improved input validation. This issue is fixed in macOS Monterey 12.5. Processing a maliciously crafted AppleScript binary may result in unexpected termination or disclosure of process memory.
CVE-2022-32817 1 Apple 5 Ipados, Iphone Os, Macos and 2 more 2025-05-22 5.5 Medium
An out-of-bounds read issue was addressed with improved bounds checking. This issue is fixed in watchOS 8.7, tvOS 15.6, iOS 15.6 and iPadOS 15.6, macOS Monterey 12.5. An app may be able to disclose kernel memory.
CVE-2021-39984 1 Huawei 1 Harmonyos 2025-05-22 7.5 High
Huawei idap module has a Out-of-bounds Read vulnerability.Successful exploitation of this vulnerability may cause Denial of Service.
CVE-2023-35635 1 Microsoft 2 Windows 11 22h2, Windows 11 23h2 2025-05-22 5.5 Medium
Windows Kernel Denial of Service Vulnerability
CVE-2023-47081 3 Adobe, Apple, Microsoft 3 Substance 3d Stager, Macos, Windows 2025-05-22 5.5 Medium
Adobe Substance 3D Stager versions 2.1.1 and earlier are affected by an out-of-bounds read vulnerability that could lead to disclosure of sensitive memory. An attacker could leverage this vulnerability to bypass mitigations such as ASLR. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2023-47074 3 Adobe, Apple, Microsoft 3 Illustrator, Macos, Windows 2025-05-22 7.8 High
Adobe Illustrator versions 28.0 (and earlier) and 27.9 (and earlier) are affected by an out-of-bounds read vulnerability when parsing a crafted file, which could result in a read past the end of an allocated memory structure. An attacker could leverage this vulnerability to execute code in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
CVE-2019-3728 1 Dell 3 Bsafe Crypto-c, Bsafe Crypto-c-micro-edition, Bsafe Micro-edition-suite 2025-05-22 7.5 High
RSA BSAFE Crypto-C Micro Edition versions from 4.0.0.0 before 4.0.5.4 and from 4.1.0 before 4.1.4, RSA BSAFE Micro Edition Suite versions from 4.0.0 before 4.0.13 and from 4.1.0 before 4.4 and RSA Crypto-C versions from 6.0.0 through 6.4.* are vulnerable to an out-of-bounds read vulnerability when processing DSA signature. A malicious remote user could potentially exploit this vulnerability to cause a crash in the library of the affected system.