Filtered by vendor Xen
Subscriptions
Filtered by product Xen
Subscriptions
Total
469 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-20588 | 5 Amd, Debian, Fedoraproject and 2 more | 78 Athlon Gold 3150g, Athlon Gold 3150g Firmware, Athlon Gold 3150ge and 75 more | 2024-11-21 | 5.5 Medium |
A division-by-zero error on some AMD processors can potentially return speculative data resulting in loss of confidentiality. | ||||
CVE-2022-42335 | 2 Fedoraproject, Xen | 2 Fedora, Xen | 2024-11-21 | 7.8 High |
x86 shadow paging arbitrary pointer dereference In environments where host assisted address translation is necessary but Hardware Assisted Paging (HAP) is unavailable, Xen will run guests in so called shadow mode. Due to too lax a check in one of the hypervisor routines used for shadow page handling it is possible for a guest with a PCI device passed through to cause the hypervisor to access an arbitrary pointer partially under guest control. | ||||
CVE-2022-42330 | 1 Xen | 1 Xen | 2024-11-21 | 7.5 High |
Guests can cause Xenstore crash via soft reset When a guest issues a "Soft Reset" (e.g. for performing a kexec) the libxl based Xen toolstack will normally perform a XS_RELEASE Xenstore operation. Due to a bug in xenstored this can result in a crash of xenstored. Any other use of XS_RELEASE will have the same impact. | ||||
CVE-2022-42325 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.5 Medium |
Xenstore: Guests can create arbitrary number of nodes via transactions T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] In case a node has been created in a transaction and it is later deleted in the same transaction, the transaction will be terminated with an error. As this error is encountered only when handling the deleted node at transaction finalization, the transaction will have been performed partially and without updating the accounting information. This will enable a malicious guest to create arbitrary number of nodes. | ||||
CVE-2022-42324 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.5 Medium |
Oxenstored 32->31 bit integer truncation issues Integers in Ocaml are 63 or 31 bits of signed precision. The Ocaml Xenbus library takes a C uint32_t out of the ring and casts it directly to an Ocaml integer. In 64-bit Ocaml builds this is fine, but in 32-bit builds, it truncates off the most significant bit, and then creates unsigned/signed confusion in the remainder. This in turn can feed a negative value into logic not expecting a negative value, resulting in unexpected exceptions being thrown. The unexpected exception is not handled suitably, creating a busy-loop trying (and failing) to take the bad packet out of the xenstore ring. | ||||
CVE-2022-42323 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.5 Medium |
Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Since the fix of XSA-322 any Xenstore node owned by a removed domain will be modified to be owned by Dom0. This will allow two malicious guests working together to create an arbitrary number of Xenstore nodes. This is possible by domain A letting domain B write into domain A's local Xenstore tree. Domain B can then create many nodes and reboot. The nodes created by domain B will now be owned by Dom0. By repeating this process over and over again an arbitrary number of nodes can be created, as Dom0's number of nodes isn't limited by Xenstore quota. | ||||
CVE-2022-42322 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.5 Medium |
Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Since the fix of XSA-322 any Xenstore node owned by a removed domain will be modified to be owned by Dom0. This will allow two malicious guests working together to create an arbitrary number of Xenstore nodes. This is possible by domain A letting domain B write into domain A's local Xenstore tree. Domain B can then create many nodes and reboot. The nodes created by domain B will now be owned by Dom0. By repeating this process over and over again an arbitrary number of nodes can be created, as Dom0's number of nodes isn't limited by Xenstore quota. | ||||
CVE-2022-42321 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.5 Medium |
Xenstore: Guests can crash xenstored via exhausting the stack Xenstored is using recursion for some Xenstore operations (e.g. for deleting a sub-tree of Xenstore nodes). With sufficiently deep nesting levels this can result in stack exhaustion on xenstored, leading to a crash of xenstored. | ||||
CVE-2022-42320 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 7.0 High |
Xenstore: Guests can get access to Xenstore nodes of deleted domains Access rights of Xenstore nodes are per domid. When a domain is gone, there might be Xenstore nodes left with access rights containing the domid of the removed domain. This is normally no problem, as those access right entries will be corrected when such a node is written later. There is a small time window when a new domain is created, where the access rights of a past domain with the same domid as the new one will be regarded to be still valid, leading to the new domain being able to get access to a node which was meant to be accessible by the removed domain. For this to happen another domain needs to write the node before the newly created domain is being introduced to Xenstore by dom0. | ||||
CVE-2022-42319 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.5 Medium |
Xenstore: Guests can cause Xenstore to not free temporary memory When working on a request of a guest, xenstored might need to allocate quite large amounts of memory temporarily. This memory is freed only after the request has been finished completely. A request is regarded to be finished only after the guest has read the response message of the request from the ring page. Thus a guest not reading the response can cause xenstored to not free the temporary memory. This can result in memory shortages causing Denial of Service (DoS) of xenstored. | ||||
CVE-2022-42310 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.5 Medium |
Xenstore: Guests can create orphaned Xenstore nodes By creating multiple nodes inside a transaction resulting in an error, a malicious guest can create orphaned nodes in the Xenstore data base, as the cleanup after the error will not remove all nodes already created. When the transaction is committed after this situation, nodes without a valid parent can be made permanent in the data base. | ||||
CVE-2022-42309 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 8.8 High |
Xenstore: Guests can crash xenstored Due to a bug in the fix of XSA-115 a malicious guest can cause xenstored to use a wrong pointer during node creation in an error path, resulting in a crash of xenstored or a memory corruption in xenstored causing further damage. Entering the error path can be controlled by the guest e.g. by exceeding the quota value of maximum nodes per domain. | ||||
CVE-2022-33748 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 5.6 Medium |
lock order inversion in transitive grant copy handling As part of XSA-226 a missing cleanup call was inserted on an error handling path. While doing so, locking requirements were not paid attention to. As a result two cooperating guests granting each other transitive grants can cause locks to be acquired nested within one another, but in respectively opposite order. With suitable timing between the involved grant copy operations this may result in the locking up of a CPU. | ||||
CVE-2022-33747 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 3.8 Low |
Arm: unbounded memory consumption for 2nd-level page tables Certain actions require e.g. removing pages from a guest's P2M (Physical-to-Machine) mapping. When large pages are in use to map guest pages in the 2nd-stage page tables, such a removal operation may incur a memory allocation (to replace a large mapping with individual smaller ones). These memory allocations are taken from the global memory pool. A malicious guest might be able to cause the global memory pool to be exhausted by manipulating its own P2M mappings. | ||||
CVE-2022-33746 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 6.5 Medium |
P2M pool freeing may take excessively long The P2M pool backing second level address translation for guests may be of significant size. Therefore its freeing may take more time than is reasonable without intermediate preemption checks. Such checking for the need to preempt was so far missing. | ||||
CVE-2022-33745 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | 8.8 High |
insufficient TLB flush for x86 PV guests in shadow mode For migration as well as to work around kernels unaware of L1TF (see XSA-273), PV guests may be run in shadow paging mode. To address XSA-401, code was moved inside a function in Xen. This code movement missed a variable changing meaning / value between old and new code positions. The now wrong use of the variable did lead to a wrong TLB flush condition, omitting flushes where such are necessary. | ||||
CVE-2022-33743 | 4 Debian, Linux, Redhat and 1 more | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2024-11-21 | 7.8 High |
network backend may cause Linux netfront to use freed SKBs While adding logic to support XDP (eXpress Data Path), a code label was moved in a way allowing for SKBs having references (pointers) retained for further processing to nevertheless be freed. | ||||
CVE-2022-33742 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2024-11-21 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-33741 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2024-11-21 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). | ||||
CVE-2022-33740 | 4 Debian, Fedoraproject, Linux and 1 more | 4 Debian Linux, Fedora, Linux Kernel and 1 more | 2024-11-21 | 7.1 High |
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742). |