Total
2022 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-26643 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: mark set as dead when unbinding anonymous set with timeout While the rhashtable set gc runs asynchronously, a race allows it to collect elements from anonymous sets with timeouts while it is being released from the commit path. Mingi Cho originally reported this issue in a different path in 6.1.x with a pipapo set with low timeouts which is not possible upstream since 7395dfacfff6 ("netfilter: nf_tables: use timestamp to check for set element timeout"). Fix this by setting on the dead flag for anonymous sets to skip async gc in this case. According to 08e4c8c5919f ("netfilter: nf_tables: mark newset as dead on transaction abort"), Florian plans to accelerate abort path by releasing objects via workqueue, therefore, this sets on the dead flag for abort path too. | ||||
CVE-2024-26583 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires. | ||||
CVE-2023-52896 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race between quota rescan and disable leading to NULL pointer deref If we have one task trying to start the quota rescan worker while another one is trying to disable quotas, we can end up hitting a race that results in the quota rescan worker doing a NULL pointer dereference. The steps for this are the following: 1) Quotas are enabled; 2) Task A calls the quota rescan ioctl and enters btrfs_qgroup_rescan(). It calls qgroup_rescan_init() which returns 0 (success) and then joins a transaction and commits it; 3) Task B calls the quota disable ioctl and enters btrfs_quota_disable(). It clears the bit BTRFS_FS_QUOTA_ENABLED from fs_info->flags and calls btrfs_qgroup_wait_for_completion(), which returns immediately since the rescan worker is not yet running. Then it starts a transaction and locks fs_info->qgroup_ioctl_lock; 4) Task A queues the rescan worker, by calling btrfs_queue_work(); 5) The rescan worker starts, and calls rescan_should_stop() at the start of its while loop, which results in 0 iterations of the loop, since the flag BTRFS_FS_QUOTA_ENABLED was cleared from fs_info->flags by task B at step 3); 6) Task B sets fs_info->quota_root to NULL; 7) The rescan worker tries to start a transaction and uses fs_info->quota_root as the root argument for btrfs_start_transaction(). This results in a NULL pointer dereference down the call chain of btrfs_start_transaction(). The stack trace is something like the one reported in Link tag below: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f] CPU: 1 PID: 34 Comm: kworker/u4:2 Not tainted 6.1.0-syzkaller-13872-gb6bb9676f216 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Workqueue: btrfs-qgroup-rescan btrfs_work_helper RIP: 0010:start_transaction+0x48/0x10f0 fs/btrfs/transaction.c:564 Code: 48 89 fb 48 (...) RSP: 0018:ffffc90000ab7ab0 EFLAGS: 00010206 RAX: 0000000000000041 RBX: 0000000000000208 RCX: ffff88801779ba80 RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000 RBP: dffffc0000000000 R08: 0000000000000001 R09: fffff52000156f5d R10: fffff52000156f5d R11: 1ffff92000156f5c R12: 0000000000000000 R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000003 FS: 0000000000000000(0000) GS:ffff8880b9900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2bea75b718 CR3: 000000001d0cc000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_qgroup_rescan_worker+0x3bb/0x6a0 fs/btrfs/qgroup.c:3402 btrfs_work_helper+0x312/0x850 fs/btrfs/async-thread.c:280 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436 kthread+0x266/0x300 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> Modules linked in: So fix this by having the rescan worker function not attempt to start a transaction if it didn't do any rescan work. | ||||
CVE-2023-52872 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tty: n_gsm: fix race condition in status line change on dead connections gsm_cleanup_mux() cleans up the gsm by closing all DLCIs, stopping all timers, removing the virtual tty devices and clearing the data queues. This procedure, however, may cause subsequent changes of the virtual modem status lines of a DLCI. More data is being added the outgoing data queue and the deleted kick timer is restarted to handle this. At this point many resources have already been removed by the cleanup procedure. Thus, a kernel panic occurs. Fix this by proving in gsm_modem_update() that the cleanup procedure has not been started and the mux is still alive. Note that writing to a virtual tty is already protected by checks against the DLCI specific connection state. | ||||
CVE-2022-49641 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix data races in proc_douintvec(). A sysctl variable is accessed concurrently, and there is always a chance of data-race. So, all readers and writers need some basic protection to avoid load/store-tearing. This patch changes proc_douintvec() to use READ_ONCE() and WRITE_ONCE() internally to fix data-races on the sysctl side. For now, proc_douintvec() itself is tolerant to a data-race, but we still need to add annotations on the other subsystem's side. | ||||
CVE-2022-49607 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: perf/core: Fix data race between perf_event_set_output() and perf_mmap_close() Yang Jihing reported a race between perf_event_set_output() and perf_mmap_close(): CPU1 CPU2 perf_mmap_close(e2) if (atomic_dec_and_test(&e2->rb->mmap_count)) // 1 - > 0 detach_rest = true ioctl(e1, IOC_SET_OUTPUT, e2) perf_event_set_output(e1, e2) ... list_for_each_entry_rcu(e, &e2->rb->event_list, rb_entry) ring_buffer_attach(e, NULL); // e1 isn't yet added and // therefore not detached ring_buffer_attach(e1, e2->rb) list_add_rcu(&e1->rb_entry, &e2->rb->event_list) After this; e1 is attached to an unmapped rb and a subsequent perf_mmap() will loop forever more: again: mutex_lock(&e->mmap_mutex); if (event->rb) { ... if (!atomic_inc_not_zero(&e->rb->mmap_count)) { ... mutex_unlock(&e->mmap_mutex); goto again; } } The loop in perf_mmap_close() holds e2->mmap_mutex, while the attach in perf_event_set_output() holds e1->mmap_mutex. As such there is no serialization to avoid this race. Change perf_event_set_output() to take both e1->mmap_mutex and e2->mmap_mutex to alleviate that problem. Additionally, have the loop in perf_mmap() detach the rb directly, this avoids having to wait for the concurrent perf_mmap_close() to get around to doing it to make progress. | ||||
CVE-2022-49596 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_min_snd_mss. While reading sysctl_tcp_min_snd_mss, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
CVE-2022-49588 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: tcp: Fix data-races around sysctl_tcp_migrate_req. While reading sysctl_tcp_migrate_req, it can be changed concurrently. Thus, we need to add READ_ONCE() to its readers. | ||||
CVE-2022-49344 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix a data-race in unix_dgram_peer_wake_me(). unix_dgram_poll() calls unix_dgram_peer_wake_me() without `other`'s lock held and check if its receive queue is full. Here we need to use unix_recvq_full_lockless() instead of unix_recvq_full(), otherwise KCSAN will report a data-race. | ||||
CVE-2022-48976 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable_offload: fix using __this_cpu_add in preemptible flow_offload_queue_work() can be called in workqueue without bh disabled, like the call trace showed in my act_ct testing, calling NF_FLOW_TABLE_STAT_INC() there would cause a call trace: BUG: using __this_cpu_add() in preemptible [00000000] code: kworker/u4:0/138560 caller is flow_offload_queue_work+0xec/0x1b0 [nf_flow_table] Workqueue: act_ct_workqueue tcf_ct_flow_table_cleanup_work [act_ct] Call Trace: <TASK> dump_stack_lvl+0x33/0x46 check_preemption_disabled+0xc3/0xf0 flow_offload_queue_work+0xec/0x1b0 [nf_flow_table] nf_flow_table_iterate+0x138/0x170 [nf_flow_table] nf_flow_table_free+0x140/0x1a0 [nf_flow_table] tcf_ct_flow_table_cleanup_work+0x2f/0x2b0 [act_ct] process_one_work+0x6a3/0x1030 worker_thread+0x8a/0xdf0 This patch fixes it by using NF_FLOW_TABLE_STAT_INC_ATOMIC() instead in flow_offload_queue_work(). Note that for FLOW_CLS_REPLACE branch in flow_offload_queue_work(), it may not be called in preemptible path, but it's good to use NF_FLOW_TABLE_STAT_INC_ATOMIC() for all cases in flow_offload_queue_work(). | ||||
CVE-2022-48944 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched: Fix yet more sched_fork() races Where commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group") fixed a fork race vs cgroup, it opened up a race vs syscalls by not placing the task on the runqueue before it gets exposed through the pidhash. Commit 13765de8148f ("sched/fair: Fix fault in reweight_entity") is trying to fix a single instance of this, instead fix the whole class of issues, effectively reverting this commit. | ||||
CVE-2022-48921 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched/fair: Fix fault in reweight_entity Syzbot found a GPF in reweight_entity. This has been bisected to commit 4ef0c5c6b5ba ("kernel/sched: Fix sched_fork() access an invalid sched_task_group") There is a race between sched_post_fork() and setpriority(PRIO_PGRP) within a thread group that causes a null-ptr-deref in reweight_entity() in CFS. The scenario is that the main process spawns number of new threads, which then call setpriority(PRIO_PGRP, 0, -20), wait, and exit. For each of the new threads the copy_process() gets invoked, which adds the new task_struct and calls sched_post_fork() for it. In the above scenario there is a possibility that setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread in the group that is just being created by copy_process(), and for which the sched_post_fork() has not been executed yet. This will trigger a null pointer dereference in reweight_entity(), as it will try to access the run queue pointer, which hasn't been set. Before the mentioned change the cfs_rq pointer for the task has been set in sched_fork(), which is called much earlier in copy_process(), before the new task is added to the thread_group. Now it is done in the sched_post_fork(), which is called after that. To fix the issue the remove the update_load param from the update_load param() function and call reweight_task() only if the task flag doesn't have the TASK_NEW flag set. | ||||
CVE-2022-48858 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix a race on command flush flow Fix a refcount use after free warning due to a race on command entry. Such race occurs when one of the commands releases its last refcount and frees its index and entry while another process running command flush flow takes refcount to this command entry. The process which handles commands flush may see this command as needed to be flushed if the other process released its refcount but didn't release the index yet. Fix it by adding the needed spin lock. It fixes the following warning trace: refcount_t: addition on 0; use-after-free. WARNING: CPU: 11 PID: 540311 at lib/refcount.c:25 refcount_warn_saturate+0x80/0xe0 ... RIP: 0010:refcount_warn_saturate+0x80/0xe0 ... Call Trace: <TASK> mlx5_cmd_trigger_completions+0x293/0x340 [mlx5_core] mlx5_cmd_flush+0x3a/0xf0 [mlx5_core] enter_error_state+0x44/0x80 [mlx5_core] mlx5_fw_fatal_reporter_err_work+0x37/0xe0 [mlx5_core] process_one_work+0x1be/0x390 worker_thread+0x4d/0x3d0 ? rescuer_thread+0x350/0x350 kthread+0x141/0x160 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x1f/0x30 </TASK> | ||||
CVE-2022-48784 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: cfg80211: fix race in netlink owner interface destruction My previous fix here to fix the deadlock left a race where the exact same deadlock (see the original commit referenced below) can still happen if cfg80211_destroy_ifaces() already runs while nl80211_netlink_notify() is still marking some interfaces as nl_owner_dead. The race happens because we have two loops here - first we dev_close() all the netdevs, and then we destroy them. If we also have two netdevs (first one need only be a wdev though) then we can find one during the first iteration, close it, and go to the second iteration -- but then find two, and try to destroy also the one we didn't close yet. Fix this by only iterating once. | ||||
CVE-2021-47454 | 1 Redhat | 1 Enterprise Linux | 2025-05-04 | 4.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: powerpc/smp: do not decrement idle task preempt count in CPU offline With PREEMPT_COUNT=y, when a CPU is offlined and then onlined again, we get: BUG: scheduling while atomic: swapper/1/0/0x00000000 no locks held by swapper/1/0. CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.15.0-rc2+ #100 Call Trace: dump_stack_lvl+0xac/0x108 __schedule_bug+0xac/0xe0 __schedule+0xcf8/0x10d0 schedule_idle+0x3c/0x70 do_idle+0x2d8/0x4a0 cpu_startup_entry+0x38/0x40 start_secondary+0x2ec/0x3a0 start_secondary_prolog+0x10/0x14 This is because powerpc's arch_cpu_idle_dead() decrements the idle task's preempt count, for reasons explained in commit a7c2bb8279d2 ("powerpc: Re-enable preemption before cpu_die()"), specifically "start_secondary() expects a preempt_count() of 0." However, since commit 2c669ef6979c ("powerpc/preempt: Don't touch the idle task's preempt_count during hotplug") and commit f1a0a376ca0c ("sched/core: Initialize the idle task with preemption disabled"), that justification no longer holds. The idle task isn't supposed to re-enable preemption, so remove the vestigial preempt_enable() from the CPU offline path. Tested with pseries and powernv in qemu, and pseries on PowerVM. | ||||
CVE-2021-47382 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: s390/qeth: fix deadlock during failing recovery Commit 0b9902c1fcc5 ("s390/qeth: fix deadlock during recovery") removed taking discipline_mutex inside qeth_do_reset(), fixing potential deadlocks. An error path was missed though, that still takes discipline_mutex and thus has the original deadlock potential. Intermittent deadlocks were seen when a qeth channel path is configured offline, causing a race between qeth_do_reset and ccwgroup_remove. Call qeth_set_offline() directly in the qeth_do_reset() error case and then a new variant of ccwgroup_set_offline(), without taking discipline_mutex. | ||||
CVE-2024-57934 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: fgraph: Add READ_ONCE() when accessing fgraph_array[] In __ftrace_return_to_handler(), a loop iterates over the fgraph_array[] elements, which are fgraph_ops. The loop checks if an element is a fgraph_stub to prevent using a fgraph_stub afterward. However, if the compiler reloads fgraph_array[] after this check, it might race with an update to fgraph_array[] that introduces a fgraph_stub. This could result in the stub being processed, but the stub contains a null "func_hash" field, leading to a NULL pointer dereference. To ensure that the gops compared against the fgraph_stub matches the gops processed later, add a READ_ONCE(). A similar patch appears in commit 63a8dfb ("function_graph: Add READ_ONCE() when accessing fgraph_array[]"). | ||||
CVE-2024-57913 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_fs: Remove WARN_ON in functionfs_bind This commit addresses an issue related to below kernel panic where panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON in functionsfs_bind, which easily leads to the following scenarios. 1.adb_write in adbd 2. UDC write via configfs ================= ===================== ->usb_ffs_open_thread() ->UDC write ->open_functionfs() ->configfs_write_iter() ->adb_open() ->gadget_dev_desc_UDC_store() ->adb_write() ->usb_gadget_register_driver_owner ->driver_register() ->StartMonitor() ->bus_add_driver() ->adb_read() ->gadget_bind_driver() <times-out without BIND event> ->configfs_composite_bind() ->usb_add_function() ->open_functionfs() ->ffs_func_bind() ->adb_open() ->functionfs_bind() <ffs->state !=FFS_ACTIVE> The adb_open, adb_read, and adb_write operations are invoked from the daemon, but trying to bind the function is a process that is invoked by UDC write through configfs, which opens up the possibility of a race condition between the two paths. In this race scenario, the kernel panic occurs due to the WARN_ON from functionfs_bind when panic_on_warn is enabled. This commit fixes the kernel panic by removing the unnecessary WARN_ON. Kernel panic - not syncing: kernel: panic_on_warn set ... [ 14.542395] Call trace: [ 14.542464] ffs_func_bind+0x1c8/0x14a8 [ 14.542468] usb_add_function+0xcc/0x1f0 [ 14.542473] configfs_composite_bind+0x468/0x588 [ 14.542478] gadget_bind_driver+0x108/0x27c [ 14.542483] really_probe+0x190/0x374 [ 14.542488] __driver_probe_device+0xa0/0x12c [ 14.542492] driver_probe_device+0x3c/0x220 [ 14.542498] __driver_attach+0x11c/0x1fc [ 14.542502] bus_for_each_dev+0x104/0x160 [ 14.542506] driver_attach+0x24/0x34 [ 14.542510] bus_add_driver+0x154/0x270 [ 14.542514] driver_register+0x68/0x104 [ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4 [ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144 [ 14.542526] configfs_write_iter+0xf0/0x138 | ||||
CVE-2024-56664 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix race between element replace and close() Element replace (with a socket different from the one stored) may race with socket's close() link popping & unlinking. __sock_map_delete() unconditionally unrefs the (wrong) element: // set map[0] = s0 map_update_elem(map, 0, s0) // drop fd of s0 close(s0) sock_map_close() lock_sock(sk) (s0!) sock_map_remove_links(sk) link = sk_psock_link_pop() sock_map_unlink(sk, link) sock_map_delete_from_link // replace map[0] with s1 map_update_elem(map, 0, s1) sock_map_update_elem (s1!) lock_sock(sk) sock_map_update_common psock = sk_psock(sk) spin_lock(&stab->lock) osk = stab->sks[idx] sock_map_add_link(..., &stab->sks[idx]) sock_map_unref(osk, &stab->sks[idx]) psock = sk_psock(osk) sk_psock_put(sk, psock) if (refcount_dec_and_test(&psock)) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) unlock_sock(sk) __sock_map_delete spin_lock(&stab->lock) sk = *psk // s1 replaced s0; sk == s1 if (!sk_test || sk_test == sk) // sk_test (s0) != sk (s1); no branch sk = xchg(psk, NULL) if (sk) sock_map_unref(sk, psk) // unref s1; sks[idx] will dangle psock = sk_psock(sk) sk_psock_put(sk, psock) if (refcount_dec_and_test()) sk_psock_drop(sk, psock) spin_unlock(&stab->lock) release_sock(sk) Then close(map) enqueues bpf_map_free_deferred, which finally calls sock_map_free(). This results in some refcount_t warnings along with a KASAN splat [1]. Fix __sock_map_delete(), do not allow sock_map_unref() on elements that may have been replaced. [1]: BUG: KASAN: slab-use-after-free in sock_map_free+0x10e/0x330 Write of size 4 at addr ffff88811f5b9100 by task kworker/u64:12/1063 CPU: 14 UID: 0 PID: 1063 Comm: kworker/u64:12 Not tainted 6.12.0+ #125 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 Workqueue: events_unbound bpf_map_free_deferred Call Trace: <TASK> dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 kasan_check_range+0x10f/0x1e0 sock_map_free+0x10e/0x330 bpf_map_free_deferred+0x173/0x320 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 1202: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 unix_create1+0x88/0x8a0 unix_create+0xc5/0x180 __sock_create+0x241/0x650 __sys_socketpair+0x1ce/0x420 __x64_sys_socketpair+0x92/0x100 do_syscall_64+0x93/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 46: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 sk_psock_destroy+0x73e/0xa50 process_one_work+0x846/0x1420 worker_thread+0x5b3/0xf80 kthread+0x29e/0x360 ret_from_fork+0x2d/0x70 ret_from_fork_asm+0x1a/0x30 The bu ---truncated--- | ||||
CVE-2024-56635 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: avoid potential UAF in default_operstate() syzbot reported an UAF in default_operstate() [1] Issue is a race between device and netns dismantles. After calling __rtnl_unlock() from netdev_run_todo(), we can not assume the netns of each device is still alive. Make sure the device is not in NETREG_UNREGISTERED state, and add an ASSERT_RTNL() before the call to __dev_get_by_index(). We might move this ASSERT_RTNL() in __dev_get_by_index() in the future. [1] BUG: KASAN: slab-use-after-free in __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 Read of size 8 at addr ffff888043eba1b0 by task syz.0.0/5339 CPU: 0 UID: 0 PID: 5339 Comm: syz.0.0 Not tainted 6.12.0-syzkaller-10296-gaaf20f870da0 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 __dev_get_by_index+0x5d/0x110 net/core/dev.c:852 default_operstate net/core/link_watch.c:51 [inline] rfc2863_policy+0x224/0x300 net/core/link_watch.c:67 linkwatch_do_dev+0x3e/0x170 net/core/link_watch.c:170 netdev_run_todo+0x461/0x1000 net/core/dev.c:10894 rtnl_unlock net/core/rtnetlink.c:152 [inline] rtnl_net_unlock include/linux/rtnetlink.h:133 [inline] rtnl_dellink+0x760/0x8d0 net/core/rtnetlink.c:3520 rtnetlink_rcv_msg+0x791/0xcf0 net/core/rtnetlink.c:6911 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2541 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f2a3cb80809 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f2a3d9cd058 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f2a3cd45fa0 RCX: 00007f2a3cb80809 RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000008 RBP: 00007f2a3cbf393e R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f2a3cd45fa0 R15: 00007ffd03bc65c8 </TASK> Allocated by task 5339: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kmalloc_array_noprof include/linux/slab.h:945 [inline] netdev_create_hash net/core/dev.c:11870 [inline] netdev_init+0x10c/0x250 net/core/dev.c:11890 ops_init+0x31e/0x590 net/core/net_namespace.c:138 setup_net+0x287/0x9e0 net/core/net_namespace.c:362 copy_net_ns+0x33f/0x570 net/core/net_namespace.c:500 create_new_namespaces+0x425/0x7b0 kernel/nsproxy.c:110 unshare_nsproxy_namespaces+0x124/0x180 kernel/nsproxy.c:228 ksys_unshare+0x57d/0xa70 kernel/fork.c:3314 __do_sys_unshare kernel/fork.c:3385 [inline] __se_sys_unshare kernel/fork.c:3383 [inline] __x64_sys_unshare+0x38/0x40 kernel/fork.c:3383 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x8 ---truncated--- |