Filtered by vendor Linux
Subscriptions
Total
15243 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49912 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix ulist leaks in error paths of qgroup self tests In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests, if we fail to add the tree ref, remove the extent item or remove the extent ref, we are returning from the test function without freeing the "old_roots" ulist that was allocated by the previous calls to btrfs_find_all_roots(). Fix that by calling ulist_free() before returning. | ||||
| CVE-2022-49913 | 1 Linux | 1 Linux Kernel | 2025-11-12 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix inode list leak during backref walking at find_parent_nodes() During backref walking, at find_parent_nodes(), if we are dealing with a data extent and we get an error while resolving the indirect backrefs, at resolve_indirect_refs(), or in the while loop that iterates over the refs in the direct refs rbtree, we end up leaking the inode lists attached to the direct refs we have in the direct refs rbtree that were not yet added to the refs ulist passed as argument to find_parent_nodes(). Since they were not yet added to the refs ulist and prelim_release() does not free the lists, on error the caller can only free the lists attached to the refs that were added to the refs ulist, all the remaining refs get their inode lists never freed, therefore leaking their memory. Fix this by having prelim_release() always free any attached inode list to each ref found in the rbtree, and have find_parent_nodes() set the ref's inode list to NULL once it transfers ownership of the inode list to a ref added to the refs ulist passed to find_parent_nodes(). | ||||
| CVE-2025-23415 | 4 Apple, F5, Linux and 1 more | 4 Macos, Big-ip Access Policy Manager, Linux Kernel and 1 more | 2025-11-12 | 3.1 Low |
| An insufficient verification of data authenticity vulnerability exists in BIG-IP APM Access Policy endpoint inspection that may allow an attacker to bypass endpoint inspection checks for VPN connection initiated thru BIG-IP APM browser network access VPN client for Windows, macOS and Linux. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. | ||||
| CVE-2021-33624 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-11-11 | 4.7 Medium |
| In kernel/bpf/verifier.c in the Linux kernel before 5.12.13, a branch can be mispredicted (e.g., because of type confusion) and consequently an unprivileged BPF program can read arbitrary memory locations via a side-channel attack, aka CID-9183671af6db. | ||||
| CVE-2022-49903 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ipv6: fix WARNING in ip6_route_net_exit_late() During the initialization of ip6_route_net_init_late(), if file ipv6_route or rt6_stats fails to be created, the initialization is successful by default. Therefore, the ipv6_route or rt6_stats file doesn't be found during the remove in ip6_route_net_exit_late(). It will cause WRNING. The following is the stack information: name 'rt6_stats' WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460 Modules linked in: Workqueue: netns cleanup_net RIP: 0010:remove_proc_entry+0x389/0x460 PKRU: 55555554 Call Trace: <TASK> ops_exit_list+0xb0/0x170 cleanup_net+0x4ea/0xb00 process_one_work+0x9bf/0x1710 worker_thread+0x665/0x1080 kthread+0x2e4/0x3a0 ret_from_fork+0x1f/0x30 </TASK> | ||||
| CVE-2022-49905 | 1 Linux | 1 Linux Kernel | 2025-11-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: Fix possible leaked pernet namespace in smc_init() In smc_init(), register_pernet_subsys(&smc_net_stat_ops) is called without any error handling. If it fails, registering of &smc_net_ops won't be reverted. And if smc_nl_init() fails, &smc_net_stat_ops itself won't be reverted. This leaves wild ops in subsystem linkedlist and when another module tries to call register_pernet_operations() it triggers page fault: BUG: unable to handle page fault for address: fffffbfff81b964c RIP: 0010:register_pernet_operations+0x1b9/0x5f0 Call Trace: <TASK> register_pernet_subsys+0x29/0x40 ebtables_init+0x58/0x1000 [ebtables] ... | ||||
| CVE-2022-49907 | 1 Linux | 1 Linux Kernel | 2025-11-11 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: net: mdio: fix undefined behavior in bit shift for __mdiobus_register Shifting signed 32-bit value by 31 bits is undefined, so changing significant bit to unsigned. The UBSAN warning calltrace like below: UBSAN: shift-out-of-bounds in drivers/net/phy/mdio_bus.c:586:27 left shift of 1 by 31 places cannot be represented in type 'int' Call Trace: <TASK> dump_stack_lvl+0x7d/0xa5 dump_stack+0x15/0x1b ubsan_epilogue+0xe/0x4e __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c __mdiobus_register+0x49d/0x4e0 fixed_mdio_bus_init+0xd8/0x12d do_one_initcall+0x76/0x430 kernel_init_freeable+0x3b3/0x422 kernel_init+0x24/0x1e0 ret_from_fork+0x1f/0x30 </TASK> | ||||
| CVE-2022-49910 | 1 Linux | 1 Linux Kernel | 2025-11-11 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix use-after-free caused by l2cap_reassemble_sdu Fix the race condition between the following two flows that run in parallel: 1. l2cap_reassemble_sdu -> chan->ops->recv (l2cap_sock_recv_cb) -> __sock_queue_rcv_skb. 2. bt_sock_recvmsg -> skb_recv_datagram, skb_free_datagram. An SKB can be queued by the first flow and immediately dequeued and freed by the second flow, therefore the callers of l2cap_reassemble_sdu can't use the SKB after that function returns. However, some places continue accessing struct l2cap_ctrl that resides in the SKB's CB for a short time after l2cap_reassemble_sdu returns, leading to a use-after-free condition (the stack trace is below, line numbers for kernel 5.19.8). Fix it by keeping a local copy of struct l2cap_ctrl. BUG: KASAN: use-after-free in l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth Read of size 1 at addr ffff88812025f2f0 by task kworker/u17:3/43169 Workqueue: hci0 hci_rx_work [bluetooth] Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4)) print_report.cold (mm/kasan/report.c:314 mm/kasan/report.c:429) ? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493) ? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth l2cap_rx (net/bluetooth/l2cap_core.c:7236 net/bluetooth/l2cap_core.c:7271) bluetooth ret_from_fork (arch/x86/entry/entry_64.S:306) </TASK> Allocated by task 43169: kasan_save_stack (mm/kasan/common.c:39) __kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469) kmem_cache_alloc_node (mm/slab.h:750 mm/slub.c:3243 mm/slub.c:3293) __alloc_skb (net/core/skbuff.c:414) l2cap_recv_frag (./include/net/bluetooth/bluetooth.h:425 net/bluetooth/l2cap_core.c:8329) bluetooth l2cap_recv_acldata (net/bluetooth/l2cap_core.c:8442) bluetooth hci_rx_work (net/bluetooth/hci_core.c:3642 net/bluetooth/hci_core.c:3832) bluetooth process_one_work (kernel/workqueue.c:2289) worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2437) kthread (kernel/kthread.c:376) ret_from_fork (arch/x86/entry/entry_64.S:306) Freed by task 27920: kasan_save_stack (mm/kasan/common.c:39) kasan_set_track (mm/kasan/common.c:45) kasan_set_free_info (mm/kasan/generic.c:372) ____kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328) slab_free_freelist_hook (mm/slub.c:1780) kmem_cache_free (mm/slub.c:3536 mm/slub.c:3553) skb_free_datagram (./include/net/sock.h:1578 ./include/net/sock.h:1639 net/core/datagram.c:323) bt_sock_recvmsg (net/bluetooth/af_bluetooth.c:295) bluetooth l2cap_sock_recvmsg (net/bluetooth/l2cap_sock.c:1212) bluetooth sock_read_iter (net/socket.c:1087) new_sync_read (./include/linux/fs.h:2052 fs/read_write.c:401) vfs_read (fs/read_write.c:482) ksys_read (fs/read_write.c:620) do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) | ||||
| CVE-2022-49911 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-11 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: ipset: enforce documented limit to prevent allocating huge memory Daniel Xu reported that the hash:net,iface type of the ipset subsystem does not limit adding the same network with different interfaces to a set, which can lead to huge memory usage or allocation failure. The quick reproducer is $ ipset create ACL.IN.ALL_PERMIT hash:net,iface hashsize 1048576 timeout 0 $ for i in $(seq 0 100); do /sbin/ipset add ACL.IN.ALL_PERMIT 0.0.0.0/0,kaf_$i timeout 0 -exist; done The backtrace when vmalloc fails: [Tue Oct 25 00:13:08 2022] ipset: vmalloc error: size 1073741848, exceeds total pages <...> [Tue Oct 25 00:13:08 2022] Call Trace: [Tue Oct 25 00:13:08 2022] <TASK> [Tue Oct 25 00:13:08 2022] dump_stack_lvl+0x48/0x60 [Tue Oct 25 00:13:08 2022] warn_alloc+0x155/0x180 [Tue Oct 25 00:13:08 2022] __vmalloc_node_range+0x72a/0x760 [Tue Oct 25 00:13:08 2022] ? hash_netiface4_add+0x7c0/0xb20 [Tue Oct 25 00:13:08 2022] ? __kmalloc_large_node+0x4a/0x90 [Tue Oct 25 00:13:08 2022] kvmalloc_node+0xa6/0xd0 [Tue Oct 25 00:13:08 2022] ? hash_netiface4_resize+0x99/0x710 <...> The fix is to enforce the limit documented in the ipset(8) manpage: > The internal restriction of the hash:net,iface set type is that the same > network prefix cannot be stored with more than 64 different interfaces > in a single set. | ||||
| CVE-2022-49879 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix BUG_ON() when directory entry has invalid rec_len The rec_len field in the directory entry has to be a multiple of 4. A corrupted filesystem image can be used to hit a BUG() in ext4_rec_len_to_disk(), called from make_indexed_dir(). ------------[ cut here ]------------ kernel BUG at fs/ext4/ext4.h:2413! ... RIP: 0010:make_indexed_dir+0x53f/0x5f0 ... Call Trace: <TASK> ? add_dirent_to_buf+0x1b2/0x200 ext4_add_entry+0x36e/0x480 ext4_add_nondir+0x2b/0xc0 ext4_create+0x163/0x200 path_openat+0x635/0xe90 do_filp_open+0xb4/0x160 ? __create_object.isra.0+0x1de/0x3b0 ? _raw_spin_unlock+0x12/0x30 do_sys_openat2+0x91/0x150 __x64_sys_open+0x6c/0xa0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 The fix simply adds a call to ext4_check_dir_entry() to validate the directory entry, returning -EFSCORRUPTED if the entry is invalid. | ||||
| CVE-2022-49882 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-11-10 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: Reject attempts to consume or refresh inactive gfn_to_pfn_cache Reject kvm_gpc_check() and kvm_gpc_refresh() if the cache is inactive. Not checking the active flag during refresh is particularly egregious, as KVM can end up with a valid, inactive cache, which can lead to a variety of use-after-free bugs, e.g. consuming a NULL kernel pointer or missing an mmu_notifier invalidation due to the cache not being on the list of gfns to invalidate. Note, "active" needs to be set if and only if the cache is on the list of caches, i.e. is reachable via mmu_notifier events. If a relevant mmu_notifier event occurs while the cache is "active" but not on the list, KVM will not acquire the cache's lock and so will not serailize the mmu_notifier event with active users and/or kvm_gpc_refresh(). A race between KVM_XEN_ATTR_TYPE_SHARED_INFO and KVM_XEN_HVM_EVTCHN_SEND can be exploited to trigger the bug. 1. Deactivate shinfo cache: kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO kvm_gpc_deactivate kvm_gpc_unmap gpc->valid = false gpc->khva = NULL gpc->active = false Result: active = false, valid = false 2. Cause cache refresh: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast kvm_gpc_check return -EWOULDBLOCK because !gpc->valid kvm_xen_set_evtchn_fast return -EWOULDBLOCK kvm_gpc_refresh hva_to_pfn_retry gpc->valid = true gpc->khva = not NULL Result: active = false, valid = true 3. Race ioctl KVM_XEN_HVM_EVTCHN_SEND against ioctl KVM_XEN_ATTR_TYPE_SHARED_INFO: kvm_arch_vm_ioctl case KVM_XEN_HVM_EVTCHN_SEND kvm_xen_hvm_evtchn_send kvm_xen_set_evtchn kvm_xen_set_evtchn_fast read_lock gpc->lock kvm_xen_hvm_set_attr case KVM_XEN_ATTR_TYPE_SHARED_INFO mutex_lock kvm->lock kvm_xen_shared_info_init kvm_gpc_activate gpc->khva = NULL kvm_gpc_check [ Check passes because gpc->valid is still true, even though gpc->khva is already NULL. ] shinfo = gpc->khva pending_bits = shinfo->evtchn_pending CRASH: test_and_set_bit(..., pending_bits) | ||||
| CVE-2022-49883 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.1 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: x86: smm: number of GPRs in the SMRAM image depends on the image format On 64 bit host, if the guest doesn't have X86_FEATURE_LM, KVM will access 16 gprs to 32-bit smram image, causing out-ouf-bound ram access. On 32 bit host, the rsm_load_state_64/enter_smm_save_state_64 is compiled out, thus access overflow can't happen. | ||||
| CVE-2022-49884 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: KVM: Initialize gfn_to_pfn_cache locks in dedicated helper Move the gfn_to_pfn_cache lock initialization to another helper and call the new helper during VM/vCPU creation. There are race conditions possible due to kvm_gfn_to_pfn_cache_init()'s ability to re-initialize the cache's locks. For example: a race between ioctl(KVM_XEN_HVM_EVTCHN_SEND) and kvm_gfn_to_pfn_cache_init() leads to a corrupted shinfo gpc lock. (thread 1) | (thread 2) | kvm_xen_set_evtchn_fast | read_lock_irqsave(&gpc->lock, ...) | | kvm_gfn_to_pfn_cache_init | rwlock_init(&gpc->lock) read_unlock_irqrestore(&gpc->lock, ...) | Rename "cache_init" and "cache_destroy" to activate+deactivate to avoid implying that the cache really is destroyed/freed. Note, there more races in the newly named kvm_gpc_activate() that will be addressed separately. [sean: call out that this is a bug fix] | ||||
| CVE-2022-49886 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/tdx: Panic on bad configs that #VE on "private" memory access All normal kernel memory is "TDX private memory". This includes everything from kernel stacks to kernel text. Handling exceptions on arbitrary accesses to kernel memory is essentially impossible because they can happen in horribly nasty places like kernel entry/exit. But, TDX hardware can theoretically _deliver_ a virtualization exception (#VE) on any access to private memory. But, it's not as bad as it sounds. TDX can be configured to never deliver these exceptions on private memory with a "TD attribute" called ATTR_SEPT_VE_DISABLE. The guest has no way to *set* this attribute, but it can check it. Ensure ATTR_SEPT_VE_DISABLE is set in early boot. panic() if it is unset. There is no sane way for Linux to run with this attribute clear so a panic() is appropriate. There's small window during boot before the check where kernel has an early #VE handler. But the handler is only for port I/O and will also panic() as soon as it sees any other #VE, such as a one generated by a private memory access. [ dhansen: Rewrite changelog and rebase on new tdx_parse_tdinfo(). Add Kirill's tested-by because I made changes since he wrote this. ] | ||||
| CVE-2022-49893 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix cxl_region leak, cleanup targets at region delete When a region is deleted any targets that have been previously assigned to that region hold references to it. Trigger those references to drop by detaching all targets at unregister_region() time. Otherwise that region object will leak as userspace has lost the ability to detach targets once region sysfs is torn down. | ||||
| CVE-2022-49898 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix tree mod log mishandling of reallocated nodes We have been seeing the following panic in production kernel BUG at fs/btrfs/tree-mod-log.c:677! invalid opcode: 0000 [#1] SMP RIP: 0010:tree_mod_log_rewind+0x1b4/0x200 RSP: 0000:ffffc9002c02f890 EFLAGS: 00010293 RAX: 0000000000000003 RBX: ffff8882b448c700 RCX: 0000000000000000 RDX: 0000000000008000 RSI: 00000000000000a7 RDI: ffff88877d831c00 RBP: 0000000000000002 R08: 000000000000009f R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000100c40 R12: 0000000000000001 R13: ffff8886c26d6a00 R14: ffff88829f5424f8 R15: ffff88877d831a00 FS: 00007fee1d80c780(0000) GS:ffff8890400c0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fee1963a020 CR3: 0000000434f33002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: btrfs_get_old_root+0x12b/0x420 btrfs_search_old_slot+0x64/0x2f0 ? tree_mod_log_oldest_root+0x3d/0xf0 resolve_indirect_ref+0xfd/0x660 ? ulist_alloc+0x31/0x60 ? kmem_cache_alloc_trace+0x114/0x2c0 find_parent_nodes+0x97a/0x17e0 ? ulist_alloc+0x30/0x60 btrfs_find_all_roots_safe+0x97/0x150 iterate_extent_inodes+0x154/0x370 ? btrfs_search_path_in_tree+0x240/0x240 iterate_inodes_from_logical+0x98/0xd0 ? btrfs_search_path_in_tree+0x240/0x240 btrfs_ioctl_logical_to_ino+0xd9/0x180 btrfs_ioctl+0xe2/0x2ec0 ? __mod_memcg_lruvec_state+0x3d/0x280 ? do_sys_openat2+0x6d/0x140 ? kretprobe_dispatcher+0x47/0x70 ? kretprobe_rethook_handler+0x38/0x50 ? rethook_trampoline_handler+0x82/0x140 ? arch_rethook_trampoline_callback+0x3b/0x50 ? kmem_cache_free+0xfb/0x270 ? do_sys_openat2+0xd5/0x140 __x64_sys_ioctl+0x71/0xb0 do_syscall_64+0x2d/0x40 Which is this code in tree_mod_log_rewind() switch (tm->op) { case BTRFS_MOD_LOG_KEY_REMOVE_WHILE_FREEING: BUG_ON(tm->slot < n); This occurs because we replay the nodes in order that they happened, and when we do a REPLACE we will log a REMOVE_WHILE_FREEING for every slot, starting at 0. 'n' here is the number of items in this block, which in this case was 1, but we had 2 REMOVE_WHILE_FREEING operations. The actual root cause of this was that we were replaying operations for a block that shouldn't have been replayed. Consider the following sequence of events 1. We have an already modified root, and we do a btrfs_get_tree_mod_seq(). 2. We begin removing items from this root, triggering KEY_REPLACE for it's child slots. 3. We remove one of the 2 children this root node points to, thus triggering the root node promotion of the remaining child, and freeing this node. 4. We modify a new root, and re-allocate the above node to the root node of this other root. The tree mod log looks something like this logical 0 op KEY_REPLACE (slot 1) seq 2 logical 0 op KEY_REMOVE (slot 1) seq 3 logical 0 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 4 logical 4096 op LOG_ROOT_REPLACE (old logical 0) seq 5 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 1) seq 6 logical 8192 op KEY_REMOVE_WHILE_FREEING (slot 0) seq 7 logical 0 op LOG_ROOT_REPLACE (old logical 8192) seq 8 >From here the bug is triggered by the following steps 1. Call btrfs_get_old_root() on the new_root. 2. We call tree_mod_log_oldest_root(btrfs_root_node(new_root)), which is currently logical 0. 3. tree_mod_log_oldest_root() calls tree_mod_log_search_oldest(), which gives us the KEY_REPLACE seq 2, and since that's not a LOG_ROOT_REPLACE we incorrectly believe that we don't have an old root, because we expect that the most recent change should be a LOG_ROOT_REPLACE. 4. Back in tree_mod_log_oldest_root() we don't have a LOG_ROOT_REPLACE, so we don't set old_root, we simply use our e ---truncated--- | ||||
| CVE-2022-49900 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: i2c: piix4: Fix adapter not be removed in piix4_remove() In piix4_probe(), the piix4 adapter will be registered in: piix4_probe() piix4_add_adapters_sb800() / piix4_add_adapter() i2c_add_adapter() Based on the probed device type, piix4_add_adapters_sb800() or single piix4_add_adapter() will be called. For the former case, piix4_adapter_count is set as the number of adapters, while for antoher case it is not set and kept default *zero*. When piix4 is removed, piix4_remove() removes the adapters added in piix4_probe(), basing on the piix4_adapter_count value. Because the count is zero for the single adapter case, the adapter won't be removed and makes the sources allocated for adapter leaked, such as the i2c client and device. These sources can still be accessed by i2c or bus and cause problems. An easily reproduced case is that if a new adapter is registered, i2c will get the leaked adapter and try to call smbus_algorithm, which was already freed: Triggered by: rmmod i2c_piix4 && modprobe max31730 BUG: unable to handle page fault for address: ffffffffc053d860 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3752 Comm: modprobe Tainted: G Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:i2c_default_probe (drivers/i2c/i2c-core-base.c:2259) i2c_core RSP: 0018:ffff888107477710 EFLAGS: 00000246 ... <TASK> i2c_detect (drivers/i2c/i2c-core-base.c:2302) i2c_core __process_new_driver (drivers/i2c/i2c-core-base.c:1336) i2c_core bus_for_each_dev (drivers/base/bus.c:301) i2c_for_each_dev (drivers/i2c/i2c-core-base.c:1823) i2c_core i2c_register_driver (drivers/i2c/i2c-core-base.c:1861) i2c_core do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... </TASK> ---[ end trace 0000000000000000 ]--- Fix this problem by correctly set piix4_adapter_count as 1 for the single adapter so it can be normally removed. | ||||
| CVE-2022-49847 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: Fix segmentation fault at module unload Move am65_cpsw_nuss_phylink_cleanup() call to after am65_cpsw_nuss_cleanup_ndev() so phylink is still valid to prevent the below Segmentation fault on module remove when first slave link is up. [ 31.652944] Unable to handle kernel paging request at virtual address 00040008000005f4 [ 31.684627] Mem abort info: [ 31.687446] ESR = 0x0000000096000004 [ 31.704614] EC = 0x25: DABT (current EL), IL = 32 bits [ 31.720663] SET = 0, FnV = 0 [ 31.723729] EA = 0, S1PTW = 0 [ 31.740617] FSC = 0x04: level 0 translation fault [ 31.756624] Data abort info: [ 31.759508] ISV = 0, ISS = 0x00000004 [ 31.776705] CM = 0, WnR = 0 [ 31.779695] [00040008000005f4] address between user and kernel address ranges [ 31.808644] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [ 31.814928] Modules linked in: wlcore_sdio wl18xx wlcore mac80211 libarc4 cfg80211 rfkill crct10dif_ce phy_gmii_sel ti_am65_cpsw_nuss(-) sch_fq_codel ipv6 [ 31.828776] CPU: 0 PID: 1026 Comm: modprobe Not tainted 6.1.0-rc2-00012-gfabfcf7dafdb-dirty #160 [ 31.837547] Hardware name: Texas Instruments AM625 (DT) [ 31.842760] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 31.849709] pc : phy_stop+0x18/0xf8 [ 31.853202] lr : phylink_stop+0x38/0xf8 [ 31.857031] sp : ffff80000a0839f0 [ 31.860335] x29: ffff80000a0839f0 x28: ffff000000de1c80 x27: 0000000000000000 [ 31.867462] x26: 0000000000000000 x25: 0000000000000000 x24: ffff80000a083b98 [ 31.874589] x23: 0000000000000800 x22: 0000000000000001 x21: ffff000001bfba90 [ 31.881715] x20: ffff0000015ee000 x19: 0004000800000200 x18: 0000000000000000 [ 31.888842] x17: ffff800076c45000 x16: ffff800008004000 x15: 000058e39660b106 [ 31.895969] x14: 0000000000000144 x13: 0000000000000144 x12: 0000000000000000 [ 31.903095] x11: 000000000000275f x10: 00000000000009e0 x9 : ffff80000a0837d0 [ 31.910222] x8 : ffff000000de26c0 x7 : ffff00007fbd6540 x6 : ffff00007fbd64c0 [ 31.917349] x5 : ffff00007fbd0b10 x4 : ffff00007fbd0b10 x3 : ffff00007fbd3920 [ 31.924476] x2 : d0a07fcff8b8d500 x1 : 0000000000000000 x0 : 0004000800000200 [ 31.931603] Call trace: [ 31.934042] phy_stop+0x18/0xf8 [ 31.937177] phylink_stop+0x38/0xf8 [ 31.940657] am65_cpsw_nuss_ndo_slave_stop+0x28/0x1e0 [ti_am65_cpsw_nuss] [ 31.947452] __dev_close_many+0xa4/0x140 [ 31.951371] dev_close_many+0x84/0x128 [ 31.955115] unregister_netdevice_many+0x130/0x6d0 [ 31.959897] unregister_netdevice_queue+0x94/0xd8 [ 31.964591] unregister_netdev+0x24/0x38 [ 31.968504] am65_cpsw_nuss_cleanup_ndev.isra.0+0x48/0x70 [ti_am65_cpsw_nuss] [ 31.975637] am65_cpsw_nuss_remove+0x58/0xf8 [ti_am65_cpsw_nuss] | ||||
| CVE-2022-49841 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: serial: imx: Add missing .thaw_noirq hook The following warning is seen with non-console UART instance when system hibernates. [ 37.371969] ------------[ cut here ]------------ [ 37.376599] uart3_root_clk already disabled [ 37.380810] WARNING: CPU: 0 PID: 296 at drivers/clk/clk.c:952 clk_core_disable+0xa4/0xb0 ... [ 37.506986] Call trace: [ 37.509432] clk_core_disable+0xa4/0xb0 [ 37.513270] clk_disable+0x34/0x50 [ 37.516672] imx_uart_thaw+0x38/0x5c [ 37.520250] platform_pm_thaw+0x30/0x6c [ 37.524089] dpm_run_callback.constprop.0+0x3c/0xd4 [ 37.528972] device_resume+0x7c/0x160 [ 37.532633] dpm_resume+0xe8/0x230 [ 37.536036] hibernation_snapshot+0x288/0x430 [ 37.540397] hibernate+0x10c/0x2e0 [ 37.543798] state_store+0xc4/0xd0 [ 37.547203] kobj_attr_store+0x1c/0x30 [ 37.550953] sysfs_kf_write+0x48/0x60 [ 37.554619] kernfs_fop_write_iter+0x118/0x1ac [ 37.559063] new_sync_write+0xe8/0x184 [ 37.562812] vfs_write+0x230/0x290 [ 37.566214] ksys_write+0x68/0xf4 [ 37.569529] __arm64_sys_write+0x20/0x2c [ 37.573452] invoke_syscall.constprop.0+0x50/0xf0 [ 37.578156] do_el0_svc+0x11c/0x150 [ 37.581648] el0_svc+0x30/0x140 [ 37.584792] el0t_64_sync_handler+0xe8/0xf0 [ 37.588976] el0t_64_sync+0x1a0/0x1a4 [ 37.592639] ---[ end trace 56e22eec54676d75 ]--- On hibernating, pm core calls into related hooks in sequence like: .freeze .freeze_noirq .thaw_noirq .thaw With .thaw_noirq hook being absent, the clock will be disabled in a unbalanced call which results the warning above. imx_uart_freeze() clk_prepare_enable() imx_uart_suspend_noirq() clk_disable() imx_uart_thaw clk_disable_unprepare() Adding the missing .thaw_noirq hook as imx_uart_resume_noirq() will have the call sequence corrected as below and thus fix the warning. imx_uart_freeze() clk_prepare_enable() imx_uart_suspend_noirq() clk_disable() imx_uart_resume_noirq() clk_enable() imx_uart_thaw clk_disable_unprepare() | ||||
| CVE-2022-49838 | 1 Linux | 1 Linux Kernel | 2025-11-10 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: sctp: clear out_curr if all frag chunks of current msg are pruned A crash was reported by Zhen Chen: list_del corruption, ffffa035ddf01c18->next is NULL WARNING: CPU: 1 PID: 250682 at lib/list_debug.c:49 __list_del_entry_valid+0x59/0xe0 RIP: 0010:__list_del_entry_valid+0x59/0xe0 Call Trace: sctp_sched_dequeue_common+0x17/0x70 [sctp] sctp_sched_fcfs_dequeue+0x37/0x50 [sctp] sctp_outq_flush_data+0x85/0x360 [sctp] sctp_outq_uncork+0x77/0xa0 [sctp] sctp_cmd_interpreter.constprop.0+0x164/0x1450 [sctp] sctp_side_effects+0x37/0xe0 [sctp] sctp_do_sm+0xd0/0x230 [sctp] sctp_primitive_SEND+0x2f/0x40 [sctp] sctp_sendmsg_to_asoc+0x3fa/0x5c0 [sctp] sctp_sendmsg+0x3d5/0x440 [sctp] sock_sendmsg+0x5b/0x70 and in sctp_sched_fcfs_dequeue() it dequeued a chunk from stream out_curr outq while this outq was empty. Normally stream->out_curr must be set to NULL once all frag chunks of current msg are dequeued, as we can see in sctp_sched_dequeue_done(). However, in sctp_prsctp_prune_unsent() as it is not a proper dequeue, sctp_sched_dequeue_done() is not called to do this. This patch is to fix it by simply setting out_curr to NULL when the last frag chunk of current msg is dequeued from out_curr stream in sctp_prsctp_prune_unsent(). | ||||