In the Linux kernel, the following vulnerability has been resolved: udp: Fix multiple wraparounds of sk->sk_rmem_alloc. __udp_enqueue_schedule_skb() has the following condition: if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) goto drop; sk->sk_rcvbuf is initialised by net.core.rmem_default and later can be configured by SO_RCVBUF, which is limited by net.core.rmem_max, or SO_RCVBUFFORCE. If we set INT_MAX to sk->sk_rcvbuf, the condition is always false as sk->sk_rmem_alloc is also signed int. Then, the size of the incoming skb is added to sk->sk_rmem_alloc unconditionally. This results in integer overflow (possibly multiple times) on sk->sk_rmem_alloc and allows a single socket to have skb up to net.core.udp_mem[1]. For example, if we set a large value to udp_mem[1] and INT_MAX to sk->sk_rcvbuf and flood packets to the socket, we can see multiple overflows: # cat /proc/net/sockstat | grep UDP: UDP: inuse 3 mem 7956736 <-- (7956736 << 12) bytes > INT_MAX * 15 ^- PAGE_SHIFT # ss -uam State Recv-Q ... UNCONN -1757018048 ... <-- flipping the sign repeatedly skmem:(r2537949248,rb2147483646,t0,tb212992,f1984,w0,o0,bl0,d0) Previously, we had a boundary check for INT_MAX, which was removed by commit 6a1f12dd85a8 ("udp: relax atomic operation on sk->sk_rmem_alloc"). A complete fix would be to revert it and cap the right operand by INT_MAX: rmem = atomic_add_return(size, &sk->sk_rmem_alloc); if (rmem > min(size + (unsigned int)sk->sk_rcvbuf, INT_MAX)) goto uncharge_drop; but we do not want to add the expensive atomic_add_return() back just for the corner case. Casting rmem to unsigned int prevents multiple wraparounds, but we still allow a single wraparound. # cat /proc/net/sockstat | grep UDP: UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> 12 # ss -uam State Recv-Q ... UNCONN -2147482816 ... <-- INT_MAX + 831 bytes skmem:(r2147484480,rb2147483646,t0,tb212992,f3264,w0,o0,bl0,d14468947) So, let's define rmem and rcvbuf as unsigned int and check skb->truesize only when rcvbuf is large enough to lower the overflow possibility. Note that we still have a small chance to see overflow if multiple skbs to the same socket are processed on different core at the same time and each size does not exceed the limit but the total size does. Note also that we must ignore skb->truesize for a small buffer as explained in commit 363dc73acacb ("udp: be less conservative with sock rmem accounting").
History

Tue, 06 May 2025 17:00:00 +0000

Type Values Removed Values Added
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
Metrics cvssV3_1

{'score': 5.7, 'vector': 'CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}


Fri, 25 Apr 2025 16:00:00 +0000

Type Values Removed Values Added
Weaknesses CWE-190
Metrics cvssV3_1

{'score': 7.3, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:L'}

threat_severity

Important

cvssV3_1

{'score': 5.7, 'vector': 'CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Moderate


Mon, 21 Apr 2025 02:45:00 +0000

Type Values Removed Values Added
Metrics cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

cvssV3_1

{'score': 7.3, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:L'}


Thu, 17 Apr 2025 14:15:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Important


Wed, 16 Apr 2025 14:30:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: udp: Fix multiple wraparounds of sk->sk_rmem_alloc. __udp_enqueue_schedule_skb() has the following condition: if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) goto drop; sk->sk_rcvbuf is initialised by net.core.rmem_default and later can be configured by SO_RCVBUF, which is limited by net.core.rmem_max, or SO_RCVBUFFORCE. If we set INT_MAX to sk->sk_rcvbuf, the condition is always false as sk->sk_rmem_alloc is also signed int. Then, the size of the incoming skb is added to sk->sk_rmem_alloc unconditionally. This results in integer overflow (possibly multiple times) on sk->sk_rmem_alloc and allows a single socket to have skb up to net.core.udp_mem[1]. For example, if we set a large value to udp_mem[1] and INT_MAX to sk->sk_rcvbuf and flood packets to the socket, we can see multiple overflows: # cat /proc/net/sockstat | grep UDP: UDP: inuse 3 mem 7956736 <-- (7956736 << 12) bytes > INT_MAX * 15 ^- PAGE_SHIFT # ss -uam State Recv-Q ... UNCONN -1757018048 ... <-- flipping the sign repeatedly skmem:(r2537949248,rb2147483646,t0,tb212992,f1984,w0,o0,bl0,d0) Previously, we had a boundary check for INT_MAX, which was removed by commit 6a1f12dd85a8 ("udp: relax atomic operation on sk->sk_rmem_alloc"). A complete fix would be to revert it and cap the right operand by INT_MAX: rmem = atomic_add_return(size, &sk->sk_rmem_alloc); if (rmem > min(size + (unsigned int)sk->sk_rcvbuf, INT_MAX)) goto uncharge_drop; but we do not want to add the expensive atomic_add_return() back just for the corner case. Casting rmem to unsigned int prevents multiple wraparounds, but we still allow a single wraparound. # cat /proc/net/sockstat | grep UDP: UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> 12 # ss -uam State Recv-Q ... UNCONN -2147482816 ... <-- INT_MAX + 831 bytes skmem:(r2147484480,rb2147483646,t0,tb212992,f3264,w0,o0,bl0,d14468947) So, let's define rmem and rcvbuf as unsigned int and check skb->truesize only when rcvbuf is large enough to lower the overflow possibility. Note that we still have a small chance to see overflow if multiple skbs to the same socket are processed on different core at the same time and each size does not exceed the limit but the total size does. Note also that we must ignore skb->truesize for a small buffer as explained in commit 363dc73acacb ("udp: be less conservative with sock rmem accounting").
Title udp: Fix multiple wraparounds of sk->sk_rmem_alloc.
References

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published: 2025-04-16T14:12:15.505Z

Updated: 2025-05-04T07:28:48.470Z

Reserved: 2024-12-29T08:45:45.812Z

Link: CVE-2025-22059

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Analyzed

Published: 2025-04-16T15:15:59.380

Modified: 2025-05-06T16:41:21.620

Link: CVE-2025-22059

cve-icon Redhat

Severity : Moderate

Publid Date: 2025-04-16T00:00:00Z

Links: CVE-2025-22059 - Bugzilla