In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Clean up integer overflow checking in map_user_pages() The encode_dma() function has some validation on in_trans->size but it would be more clear to move those checks to find_and_map_user_pages(). The encode_dma() had two checks: if (in_trans->addr + in_trans->size < in_trans->addr || !in_trans->size) return -EINVAL; The in_trans->addr variable is the starting address. The in_trans->size variable is the total size of the transfer. The transfer can occur in parts and the resources->xferred_dma_size tracks how many bytes we have already transferred. This patch introduces a new variable "remaining" which represents the amount we want to transfer (in_trans->size) minus the amount we have already transferred (resources->xferred_dma_size). I have modified the check for if in_trans->size is zero to instead check if in_trans->size is less than resources->xferred_dma_size. If we have already transferred more bytes than in_trans->size then there are negative bytes remaining which doesn't make sense. If there are zero bytes remaining to be copied, just return success. The check in encode_dma() checked that "addr + size" could not overflow and barring a driver bug that should work, but it's easier to check if we do this in parts. First check that "in_trans->addr + resources->xferred_dma_size" is safe. Then check that "xfer_start_addr + remaining" is safe. My final concern was that we are dealing with u64 values but on 32bit systems the kmalloc() function will truncate the sizes to 32 bits. So I calculated "total = in_trans->size + offset_in_page(xfer_start_addr);" and returned -EINVAL if it were >= SIZE_MAX. This will not affect 64bit systems.
History

Wed, 10 Dec 2025 12:15:00 +0000

Type Values Removed Values Added
References
Metrics threat_severity

None

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}

threat_severity

Moderate


Tue, 09 Dec 2025 00:30:00 +0000

Type Values Removed Values Added
Description In the Linux kernel, the following vulnerability has been resolved: accel/qaic: Clean up integer overflow checking in map_user_pages() The encode_dma() function has some validation on in_trans->size but it would be more clear to move those checks to find_and_map_user_pages(). The encode_dma() had two checks: if (in_trans->addr + in_trans->size < in_trans->addr || !in_trans->size) return -EINVAL; The in_trans->addr variable is the starting address. The in_trans->size variable is the total size of the transfer. The transfer can occur in parts and the resources->xferred_dma_size tracks how many bytes we have already transferred. This patch introduces a new variable "remaining" which represents the amount we want to transfer (in_trans->size) minus the amount we have already transferred (resources->xferred_dma_size). I have modified the check for if in_trans->size is zero to instead check if in_trans->size is less than resources->xferred_dma_size. If we have already transferred more bytes than in_trans->size then there are negative bytes remaining which doesn't make sense. If there are zero bytes remaining to be copied, just return success. The check in encode_dma() checked that "addr + size" could not overflow and barring a driver bug that should work, but it's easier to check if we do this in parts. First check that "in_trans->addr + resources->xferred_dma_size" is safe. Then check that "xfer_start_addr + remaining" is safe. My final concern was that we are dealing with u64 values but on 32bit systems the kmalloc() function will truncate the sizes to 32 bits. So I calculated "total = in_trans->size + offset_in_page(xfer_start_addr);" and returned -EINVAL if it were >= SIZE_MAX. This will not affect 64bit systems.
Title accel/qaic: Clean up integer overflow checking in map_user_pages()
First Time appeared Linux
Linux linux Kernel
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
References

cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published: 2025-12-09T00:00:34.074Z

Updated: 2025-12-09T00:00:34.074Z

Reserved: 2025-12-08T23:58:35.272Z

Link: CVE-2023-53778

cve-icon Vulnrichment

No data.

cve-icon NVD

Status : Awaiting Analysis

Published: 2025-12-09T01:16:48.887

Modified: 2025-12-09T18:37:13.640

Link: CVE-2023-53778

cve-icon Redhat

Severity : Moderate

Publid Date: 2025-12-09T00:00:00Z

Links: CVE-2023-53778 - Bugzilla