Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16470 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-54225 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: net: ipa: only reset hashed tables when supported Last year, the code that manages GSI channel transactions switched from using spinlock-protected linked lists to using indexes into the ring buffer used for a channel. Recently, Google reported seeing transaction reference count underflows occasionally during shutdown. Doug Anderson found a way to reproduce the issue reliably, and bisected the issue to the commit that eliminated the linked lists and the lock. The root cause was ultimately determined to be related to unused transactions being committed as part of the modem shutdown cleanup activity. Unused transactions are not normally expected (except in error cases). The modem uses some ranges of IPA-resident memory, and whenever it shuts down we zero those ranges. In ipa_filter_reset_table() a transaction is allocated to zero modem filter table entries. If hashing is not supported, hashed table memory should not be zeroed. But currently nothing prevents that, and the result is an unused transaction. Something similar occurs when we zero routing table entries for the modem. By preventing any attempt to clear hashed tables when hashing is not supported, the reference count underflow is avoided in this case. Note that there likely remains an issue with properly freeing unused transactions (if they occur due to errors). This patch addresses only the underflows that Google originally reported. | ||||
| CVE-2023-54252 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix memory leaks when parsing ThinkStation WMI strings My previous commit introduced a memory leak where the item allocated from tlmi_setting was not freed. This commit also renames it to avoid confusion with the similarly name variable in the same function. | ||||
| CVE-2023-54235 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: PCI/DOE: Fix destroy_work_on_stack() race The following debug object splat was observed in testing: ODEBUG: free active (active state 0) object: 0000000097d23782 object type: work_struct hint: doe_statemachine_work+0x0/0x510 WARNING: CPU: 1 PID: 71 at lib/debugobjects.c:514 debug_print_object+0x7d/0xb0 ... Workqueue: pci 0000:36:00.0 DOE [1 doe_statemachine_work RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: ? debug_print_object+0x7d/0xb0 ? __pfx_doe_statemachine_work+0x10/0x10 debug_object_free.part.0+0x11b/0x150 doe_statemachine_work+0x45e/0x510 process_one_work+0x1d4/0x3c0 This occurs because destroy_work_on_stack() was called after signaling the completion in the calling thread. This creates a race between destroy_work_on_stack() and the task->work struct going out of scope in pci_doe(). Signal the work complete after destroying the work struct. This is safe because signal_task_complete() is the final thing the work item does and the workqueue code is careful not to access the work struct after. | ||||
| CVE-2023-54319 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: pinctrl: at91-pio4: check return value of devm_kasprintf() devm_kasprintf() returns a pointer to dynamically allocated memory. Pointer could be NULL in case allocation fails. Check pointer validity. Identified with coccinelle (kmerr.cocci script). Depends-on: 1c4e5c470a56 ("pinctrl: at91: use devm_kasprintf() to avoid potential leaks") Depends-on: 5a8f9cf269e8 ("pinctrl: at91-pio4: use proper format specifier for unsigned int") | ||||
| CVE-2023-54270 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: media: usb: siano: Fix use after free bugs caused by do_submit_urb There are UAF bugs caused by do_submit_urb(). One of the KASan reports is shown below: [ 36.403605] BUG: KASAN: use-after-free in worker_thread+0x4a2/0x890 [ 36.406105] Read of size 8 at addr ffff8880059600e8 by task kworker/0:2/49 [ 36.408316] [ 36.408867] CPU: 0 PID: 49 Comm: kworker/0:2 Not tainted 6.2.0-rc3-15798-g5a41237ad1d4-dir8 [ 36.411696] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g15584 [ 36.416157] Workqueue: 0x0 (events) [ 36.417654] Call Trace: [ 36.418546] <TASK> [ 36.419320] dump_stack_lvl+0x96/0xd0 [ 36.420522] print_address_description+0x75/0x350 [ 36.421992] print_report+0x11b/0x250 [ 36.423174] ? _raw_spin_lock_irqsave+0x87/0xd0 [ 36.424806] ? __virt_addr_valid+0xcf/0x170 [ 36.426069] ? worker_thread+0x4a2/0x890 [ 36.427355] kasan_report+0x131/0x160 [ 36.428556] ? worker_thread+0x4a2/0x890 [ 36.430053] worker_thread+0x4a2/0x890 [ 36.431297] ? worker_clr_flags+0x90/0x90 [ 36.432479] kthread+0x166/0x190 [ 36.433493] ? kthread_blkcg+0x50/0x50 [ 36.434669] ret_from_fork+0x22/0x30 [ 36.435923] </TASK> [ 36.436684] [ 36.437215] Allocated by task 24: [ 36.438289] kasan_set_track+0x50/0x80 [ 36.439436] __kasan_kmalloc+0x89/0xa0 [ 36.440566] smsusb_probe+0x374/0xc90 [ 36.441920] usb_probe_interface+0x2d1/0x4c0 [ 36.443253] really_probe+0x1d5/0x580 [ 36.444539] __driver_probe_device+0xe3/0x130 [ 36.446085] driver_probe_device+0x49/0x220 [ 36.447423] __device_attach_driver+0x19e/0x1b0 [ 36.448931] bus_for_each_drv+0xcb/0x110 [ 36.450217] __device_attach+0x132/0x1f0 [ 36.451470] bus_probe_device+0x59/0xf0 [ 36.452563] device_add+0x4ec/0x7b0 [ 36.453830] usb_set_configuration+0xc63/0xe10 [ 36.455230] usb_generic_driver_probe+0x3b/0x80 [ 36.456166] printk: console [ttyGS0] disabled [ 36.456569] usb_probe_device+0x90/0x110 [ 36.459523] really_probe+0x1d5/0x580 [ 36.461027] __driver_probe_device+0xe3/0x130 [ 36.462465] driver_probe_device+0x49/0x220 [ 36.463847] __device_attach_driver+0x19e/0x1b0 [ 36.465229] bus_for_each_drv+0xcb/0x110 [ 36.466466] __device_attach+0x132/0x1f0 [ 36.467799] bus_probe_device+0x59/0xf0 [ 36.469010] device_add+0x4ec/0x7b0 [ 36.470125] usb_new_device+0x863/0xa00 [ 36.471374] hub_event+0x18c7/0x2220 [ 36.472746] process_one_work+0x34c/0x5b0 [ 36.474041] worker_thread+0x4b7/0x890 [ 36.475216] kthread+0x166/0x190 [ 36.476267] ret_from_fork+0x22/0x30 [ 36.477447] [ 36.478160] Freed by task 24: [ 36.479239] kasan_set_track+0x50/0x80 [ 36.480512] kasan_save_free_info+0x2b/0x40 [ 36.481808] ____kasan_slab_free+0x122/0x1a0 [ 36.483173] __kmem_cache_free+0xc4/0x200 [ 36.484563] smsusb_term_device+0xcd/0xf0 [ 36.485896] smsusb_probe+0xc85/0xc90 [ 36.486976] usb_probe_interface+0x2d1/0x4c0 [ 36.488303] really_probe+0x1d5/0x580 [ 36.489498] __driver_probe_device+0xe3/0x130 [ 36.491140] driver_probe_device+0x49/0x220 [ 36.492475] __device_attach_driver+0x19e/0x1b0 [ 36.493988] bus_for_each_drv+0xcb/0x110 [ 36.495171] __device_attach+0x132/0x1f0 [ 36.496617] bus_probe_device+0x59/0xf0 [ 36.497875] device_add+0x4ec/0x7b0 [ 36.498972] usb_set_configuration+0xc63/0xe10 [ 36.500264] usb_generic_driver_probe+0x3b/0x80 [ 36.501740] usb_probe_device+0x90/0x110 [ 36.503084] really_probe+0x1d5/0x580 [ 36.504241] __driver_probe_device+0xe3/0x130 [ 36.505548] driver_probe_device+0x49/0x220 [ 36.506766] __device_attach_driver+0x19e/0x1b0 [ 36.508368] bus_for_each_drv+0xcb/0x110 [ 36.509646] __device_attach+0x132/0x1f0 [ 36.510911] bus_probe_device+0x59/0xf0 [ 36.512103] device_add+0x4ec/0x7b0 [ 36.513215] usb_new_device+0x863/0xa00 [ 36.514736] hub_event+0x18c7/0x2220 [ 36.516130] process_one_work+ ---truncated--- | ||||
| CVE-2023-54307 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ptp_qoriq: fix memory leak in probe() Smatch complains that: drivers/ptp/ptp_qoriq.c ptp_qoriq_probe() warn: 'base' from ioremap() not released. Fix this by revising the parameter from 'ptp_qoriq->base' to 'base'. This is only a bug if ptp_qoriq_init() returns on the first -ENODEV error path. For other error paths ptp_qoriq->base and base are the same. And this change makes the code more readable. | ||||
| CVE-2023-54309 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: tpm: tpm_vtpm_proxy: fix a race condition in /dev/vtpmx creation /dev/vtpmx is made visible before 'workqueue' is initialized, which can lead to a memory corruption in the worst case scenario. Address this by initializing 'workqueue' as the very first step of the driver initialization. | ||||
| CVE-2023-54275 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Fix memory leak in ath11k_peer_rx_frag_setup crypto_alloc_shash() allocates resources, which should be released by crypto_free_shash(). When ath11k_peer_find() fails, there has memory leak. Add missing crypto_free_shash() to fix this. | ||||
| CVE-2023-54217 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: Revert "drm/msm: Add missing check and destroy for alloc_ordered_workqueue" This reverts commit 643b7d0869cc7f1f7a5ac7ca6bd25d88f54e31d0. A recent patch that tried to fix up the msm_drm_init() paths with respect to the workqueue but only ended up making things worse: First, the newly added calls to msm_drm_uninit() on early errors would trigger NULL-pointer dereferences, for example, as the kms pointer would not have been initialised. (Note that these paths were also modified by a second broken error handling patch which in effect cancelled out this part when merged.) Second, the newly added allocation sanity check would still leak the previously allocated drm device. Instead of trying to salvage what was badly broken (and clearly not tested), let's revert the bad commit so that clean and backportable fixes can be added in its place. Patchwork: https://patchwork.freedesktop.org/patch/525107/ | ||||
| CVE-2023-54237 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link() There is a certain chance to trigger the following panic: PID: 5900 TASK: ffff88c1c8af4100 CPU: 1 COMMAND: "kworker/1:48" #0 [ffff9456c1cc79a0] machine_kexec at ffffffff870665b7 #1 [ffff9456c1cc79f0] __crash_kexec at ffffffff871b4c7a #2 [ffff9456c1cc7ab0] crash_kexec at ffffffff871b5b60 #3 [ffff9456c1cc7ac0] oops_end at ffffffff87026ce7 #4 [ffff9456c1cc7ae0] page_fault_oops at ffffffff87075715 #5 [ffff9456c1cc7b58] exc_page_fault at ffffffff87ad0654 #6 [ffff9456c1cc7b80] asm_exc_page_fault at ffffffff87c00b62 [exception RIP: ib_alloc_mr+19] RIP: ffffffffc0c9cce3 RSP: ffff9456c1cc7c38 RFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000004 RDX: 0000000000000010 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88c1ea281d00 R8: 000000020a34ffff R9: ffff88c1350bbb20 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000010 R14: ffff88c1ab040a50 R15: ffff88c1ea281d00 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff9456c1cc7c60] smc_ib_get_memory_region at ffffffffc0aff6df [smc] #8 [ffff9456c1cc7c88] smcr_buf_map_link at ffffffffc0b0278c [smc] #9 [ffff9456c1cc7ce0] __smc_buf_create at ffffffffc0b03586 [smc] The reason here is that when the server tries to create a second link, smc_llc_srv_add_link() has no protection and may add a new link to link group. This breaks the security environment protected by llc_conf_mutex. | ||||
| CVE-2023-54303 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Disable preemption in bpf_perf_event_output The nesting protection in bpf_perf_event_output relies on disabled preemption, which is guaranteed for kprobes and tracepoints. However bpf_perf_event_output can be also called from uprobes context through bpf_prog_run_array_sleepable function which disables migration, but keeps preemption enabled. This can cause task to be preempted by another one inside the nesting protection and lead eventually to two tasks using same perf_sample_data buffer and cause crashes like: kernel tried to execute NX-protected page - exploit attempt? (uid: 0) BUG: unable to handle page fault for address: ffffffff82be3eea ... Call Trace: ? __die+0x1f/0x70 ? page_fault_oops+0x176/0x4d0 ? exc_page_fault+0x132/0x230 ? asm_exc_page_fault+0x22/0x30 ? perf_output_sample+0x12b/0x910 ? perf_event_output+0xd0/0x1d0 ? bpf_perf_event_output+0x162/0x1d0 ? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87 ? __uprobe_perf_func+0x12b/0x540 ? uprobe_dispatcher+0x2c4/0x430 ? uprobe_notify_resume+0x2da/0xce0 ? atomic_notifier_call_chain+0x7b/0x110 ? exit_to_user_mode_prepare+0x13e/0x290 ? irqentry_exit_to_user_mode+0x5/0x30 ? asm_exc_int3+0x35/0x40 Fixing this by disabling preemption in bpf_perf_event_output. | ||||
| CVE-2023-54302 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix data race on CQP completion stats CQP completion statistics is read lockesly in irdma_wait_event and irdma_check_cqp_progress while it can be updated in the completion thread irdma_sc_ccq_get_cqe_info on another CPU as KCSAN reports. Make completion statistics an atomic variable to reflect coherent updates to it. This will also avoid load/store tearing logic bug potentially possible by compiler optimizations. [77346.170861] BUG: KCSAN: data-race in irdma_handle_cqp_op [irdma] / irdma_sc_ccq_get_cqe_info [irdma] [77346.171383] write to 0xffff8a3250b108e0 of 8 bytes by task 9544 on cpu 4: [77346.171483] irdma_sc_ccq_get_cqe_info+0x27a/0x370 [irdma] [77346.171658] irdma_cqp_ce_handler+0x164/0x270 [irdma] [77346.171835] cqp_compl_worker+0x1b/0x20 [irdma] [77346.172009] process_one_work+0x4d1/0xa40 [77346.172024] worker_thread+0x319/0x700 [77346.172037] kthread+0x180/0x1b0 [77346.172054] ret_from_fork+0x22/0x30 [77346.172136] read to 0xffff8a3250b108e0 of 8 bytes by task 9838 on cpu 2: [77346.172234] irdma_handle_cqp_op+0xf4/0x4b0 [irdma] [77346.172413] irdma_cqp_aeq_cmd+0x75/0xa0 [irdma] [77346.172592] irdma_create_aeq+0x390/0x45a [irdma] [77346.172769] irdma_rt_init_hw.cold+0x212/0x85d [irdma] [77346.172944] irdma_probe+0x54f/0x620 [irdma] [77346.173122] auxiliary_bus_probe+0x66/0xa0 [77346.173137] really_probe+0x140/0x540 [77346.173154] __driver_probe_device+0xc7/0x220 [77346.173173] driver_probe_device+0x5f/0x140 [77346.173190] __driver_attach+0xf0/0x2c0 [77346.173208] bus_for_each_dev+0xa8/0xf0 [77346.173225] driver_attach+0x29/0x30 [77346.173240] bus_add_driver+0x29c/0x2f0 [77346.173255] driver_register+0x10f/0x1a0 [77346.173272] __auxiliary_driver_register+0xbc/0x140 [77346.173287] irdma_init_module+0x55/0x1000 [irdma] [77346.173460] do_one_initcall+0x7d/0x410 [77346.173475] do_init_module+0x81/0x2c0 [77346.173491] load_module+0x1232/0x12c0 [77346.173506] __do_sys_finit_module+0x101/0x180 [77346.173522] __x64_sys_finit_module+0x3c/0x50 [77346.173538] do_syscall_64+0x39/0x90 [77346.173553] entry_SYSCALL_64_after_hwframe+0x63/0xcd [77346.173634] value changed: 0x0000000000000094 -> 0x0000000000000095 | ||||
| CVE-2023-54306 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: tls: avoid hanging tasks on the tx_lock syzbot sent a hung task report and Eric explains that adversarial receiver may keep RWIN at 0 for a long time, so we are not guaranteed to make forward progress. Thread which took tx_lock and went to sleep may not release tx_lock for hours. Use interruptible sleep where possible and reschedule the work if it can't take the lock. Testing: existing selftest passes | ||||
| CVE-2023-54300 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should validate pkt_len before accessing the SKB. For example, the obtained SKB may have been badly constructed with pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr but after being processed in ath9k_htc_rx_msg() and passed to ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI command header which should be located inside its data payload. Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit memory can be referenced. Tested on Qualcomm Atheros Communications AR9271 802.11n . Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
| CVE-2023-54299 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: typec: bus: verify partner exists in typec_altmode_attention Some usb hubs will negotiate DisplayPort Alt mode with the device but will then negotiate a data role swap after entering the alt mode. The data role swap causes the device to unregister all alt modes, however the usb hub will still send Attention messages even after failing to reregister the Alt Mode. type_altmode_attention currently does not verify whether or not a device's altmode partner exists, which results in a NULL pointer error when dereferencing the typec_altmode and typec_altmode_ops belonging to the altmode partner. Verify the presence of a device's altmode partner before sending the Attention message to the Alt Mode driver. | ||||
| CVE-2023-54298 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: thermal: intel: quark_dts: fix error pointer dereference If alloc_soc_dts() fails, then we can just return. Trying to free "soc_dts" will lead to an Oops. | ||||
| CVE-2023-54219 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: Revert "IB/isert: Fix incorrect release of isert connection" Commit: 699826f4e30a ("IB/isert: Fix incorrect release of isert connection") is causing problems on OPA when DEVICE_REMOVAL is happening. ------------[ cut here ]------------ WARNING: CPU: 52 PID: 2117247 at drivers/infiniband/core/cq.c:359 ib_cq_pool_cleanup+0xac/0xb0 [ib_core] Modules linked in: nfsd nfs_acl target_core_user uio tcm_fc libfc scsi_transport_fc tcm_loop target_core_pscsi target_core_iblock target_core_file rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs rfkill rpcrdma rdma_ucm ib_srpt sunrpc ib_isert iscsi_target_mod target_core_mod opa_vnic ib_iser libiscsi ib_umad scsi_transport_iscsi rdma_cm ib_ipoib iw_cm ib_cm hfi1(-) rdmavt ib_uverbs intel_rapl_msr intel_rapl_common sb_edac ib_core x86_pkg_temp_thermal intel_powerclamp coretemp i2c_i801 mxm_wmi rapl iTCO_wdt ipmi_si iTCO_vendor_support mei_me ipmi_devintf mei intel_cstate ioatdma intel_uncore i2c_smbus joydev pcspkr lpc_ich ipmi_msghandler acpi_power_meter acpi_pad xfs libcrc32c sr_mod sd_mod cdrom t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel drm_kms_helper drm_shmem_helper ahci libahci ghash_clmulni_intel igb drm libata dca i2c_algo_bit wmi fuse CPU: 52 PID: 2117247 Comm: modprobe Not tainted 6.5.0-rc1+ #1 Hardware name: Intel Corporation S2600CWR/S2600CW, BIOS SE5C610.86B.01.01.0014.121820151719 12/18/2015 RIP: 0010:ib_cq_pool_cleanup+0xac/0xb0 [ib_core] Code: ff 48 8b 43 40 48 8d 7b 40 48 83 e8 40 4c 39 e7 75 b3 49 83 c4 10 4d 39 fc 75 94 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc <0f> 0b eb a1 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f RSP: 0018:ffffc10bea13fc80 EFLAGS: 00010206 RAX: 000000000000010c RBX: ffff9bf5c7e66c00 RCX: 000000008020001d RDX: 000000008020001e RSI: fffff175221f9900 RDI: ffff9bf5c7e67640 RBP: ffff9bf5c7e67600 R08: ffff9bf5c7e64400 R09: 000000008020001d R10: 0000000040000000 R11: 0000000000000000 R12: ffff9bee4b1e8a18 R13: dead000000000122 R14: dead000000000100 R15: ffff9bee4b1e8a38 FS: 00007ff1e6d38740(0000) GS:ffff9bfd9fb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005652044ecc68 CR3: 0000000889b5c005 CR4: 00000000001706e0 Call Trace: <TASK> ? __warn+0x80/0x130 ? ib_cq_pool_cleanup+0xac/0xb0 [ib_core] ? report_bug+0x195/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? ib_cq_pool_cleanup+0xac/0xb0 [ib_core] disable_device+0x9d/0x160 [ib_core] __ib_unregister_device+0x42/0xb0 [ib_core] ib_unregister_device+0x22/0x30 [ib_core] rvt_unregister_device+0x20/0x90 [rdmavt] hfi1_unregister_ib_device+0x16/0xf0 [hfi1] remove_one+0x55/0x1a0 [hfi1] pci_device_remove+0x36/0xa0 device_release_driver_internal+0x193/0x200 driver_detach+0x44/0x90 bus_remove_driver+0x69/0xf0 pci_unregister_driver+0x2a/0xb0 hfi1_mod_cleanup+0xc/0x3c [hfi1] __do_sys_delete_module.constprop.0+0x17a/0x2f0 ? exit_to_user_mode_prepare+0xc4/0xd0 ? syscall_trace_enter.constprop.0+0x126/0x1a0 do_syscall_64+0x5c/0x90 ? syscall_exit_to_user_mode+0x12/0x30 ? do_syscall_64+0x69/0x90 ? syscall_exit_work+0x103/0x130 ? syscall_exit_to_user_mode+0x12/0x30 ? do_syscall_64+0x69/0x90 ? exc_page_fault+0x65/0x150 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7ff1e643f5ab Code: 73 01 c3 48 8b 0d 75 a8 1b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 b0 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 45 a8 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007ffec9103cc8 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 00005615267fdc50 RCX: 00007ff1e643f5ab RDX: 0000000000000000 RSI: 0000000000000800 RDI: 00005615267fdcb8 RBP: 00005615267fdc50 R08: 0000000000000000 R09: 0000000000000000 R10: 00007ff1e659eac0 R11: 0000000000000206 R12: 00005615267fdcb8 R13: 00000000000 ---truncated--- | ||||
| CVE-2023-54293 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: bcache: fixup btree_cache_wait list damage We get a kernel crash about "list_add corruption. next->prev should be prev (ffff9c801bc01210), but was ffff9c77b688237c. (next=ffffae586d8afe68)." crash> struct list_head 0xffff9c801bc01210 struct list_head { next = 0xffffae586d8afe68, prev = 0xffffae586d8afe68 } crash> struct list_head 0xffff9c77b688237c struct list_head { next = 0x0, prev = 0x0 } crash> struct list_head 0xffffae586d8afe68 struct list_head struct: invalid kernel virtual address: ffffae586d8afe68 type: "gdb_readmem_callback" Cannot access memory at address 0xffffae586d8afe68 [230469.019492] Call Trace: [230469.032041] prepare_to_wait+0x8a/0xb0 [230469.044363] ? bch_btree_keys_free+0x6c/0xc0 [escache] [230469.056533] mca_cannibalize_lock+0x72/0x90 [escache] [230469.068788] mca_alloc+0x2ae/0x450 [escache] [230469.080790] bch_btree_node_get+0x136/0x2d0 [escache] [230469.092681] bch_btree_check_thread+0x1e1/0x260 [escache] [230469.104382] ? finish_wait+0x80/0x80 [230469.115884] ? bch_btree_check_recurse+0x1a0/0x1a0 [escache] [230469.127259] kthread+0x112/0x130 [230469.138448] ? kthread_flush_work_fn+0x10/0x10 [230469.149477] ret_from_fork+0x35/0x40 bch_btree_check_thread() and bch_dirty_init_thread() may call mca_cannibalize() to cannibalize other cached btree nodes. Only one thread can do it at a time, so the op of other threads will be added to the btree_cache_wait list. We must call finish_wait() to remove op from btree_cache_wait before free it's memory address. Otherwise, the list will be damaged. Also should call bch_cannibalize_unlock() to release the btree_cache_alloc_lock and wake_up other waiters. | ||||
| CVE-2023-54281 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: release path before inode lookup during the ino lookup ioctl During the ino lookup ioctl we can end up calling btrfs_iget() to get an inode reference while we are holding on a root's btree. If btrfs_iget() needs to lookup the inode from the root's btree, because it's not currently loaded in memory, then it will need to lock another or the same path in the same root btree. This may result in a deadlock and trigger the following lockdep splat: WARNING: possible circular locking dependency detected 6.5.0-rc7-syzkaller-00004-gf7757129e3de #0 Not tainted ------------------------------------------------------ syz-executor277/5012 is trying to acquire lock: ffff88802df41710 (btrfs-tree-01){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 but task is already holding lock: ffff88802df418e8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (btrfs-tree-00){++++}-{3:3}: down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645 __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 btrfs_search_slot+0x13a4/0x2f80 fs/btrfs/ctree.c:2302 btrfs_init_root_free_objectid+0x148/0x320 fs/btrfs/disk-io.c:4955 btrfs_init_fs_root fs/btrfs/disk-io.c:1128 [inline] btrfs_get_root_ref+0x5ae/0xae0 fs/btrfs/disk-io.c:1338 btrfs_get_fs_root fs/btrfs/disk-io.c:1390 [inline] open_ctree+0x29c8/0x3030 fs/btrfs/disk-io.c:3494 btrfs_fill_super+0x1c7/0x2f0 fs/btrfs/super.c:1154 btrfs_mount_root+0x7e0/0x910 fs/btrfs/super.c:1519 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 fc_mount fs/namespace.c:1112 [inline] vfs_kern_mount+0xbc/0x150 fs/namespace.c:1142 btrfs_mount+0x39f/0xb50 fs/btrfs/super.c:1579 legacy_get_tree+0xef/0x190 fs/fs_context.c:611 vfs_get_tree+0x8c/0x270 fs/super.c:1519 do_new_mount+0x28f/0xae0 fs/namespace.c:3335 do_mount fs/namespace.c:3675 [inline] __do_sys_mount fs/namespace.c:3884 [inline] __se_sys_mount+0x2d9/0x3c0 fs/namespace.c:3861 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (btrfs-tree-01){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3142 [inline] check_prevs_add kernel/locking/lockdep.c:3261 [inline] validate_chain kernel/locking/lockdep.c:3876 [inline] __lock_acquire+0x39ff/0x7f70 kernel/locking/lockdep.c:5144 lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5761 down_read_nested+0x49/0x2f0 kernel/locking/rwsem.c:1645 __btrfs_tree_read_lock+0x2f/0x220 fs/btrfs/locking.c:136 btrfs_tree_read_lock fs/btrfs/locking.c:142 [inline] btrfs_read_lock_root_node+0x292/0x3c0 fs/btrfs/locking.c:281 btrfs_search_slot_get_root fs/btrfs/ctree.c:1832 [inline] btrfs_search_slot+0x4ff/0x2f80 fs/btrfs/ctree.c:2154 btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:412 btrfs_read_locked_inode fs/btrfs/inode.c:3892 [inline] btrfs_iget_path+0x2d9/0x1520 fs/btrfs/inode.c:5716 btrfs_search_path_in_tree_user fs/btrfs/ioctl.c:1961 [inline] btrfs_ioctl_ino_lookup_user+0x77a/0xf50 fs/btrfs/ioctl.c:2105 btrfs_ioctl+0xb0b/0xd40 fs/btrfs/ioctl.c:4683 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info ---truncated--- | ||||
| CVE-2023-54228 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: regulator: raa215300: Fix resource leak in case of error The clk_register_clkdev() allocates memory by calling vclkdev_alloc() and this memory is not freed in the error path. Similarly, resources allocated by clk_register_fixed_rate() are not freed in the error path. Fix these issues by using devm_clk_hw_register_fixed_rate() and devm_clk_hw_register_clkdev(). After this, the static variable clk is not needed. Replace it with local variable hw in probe() and drop calling clk_unregister_fixed_rate() from raa215300_rtc_unregister_device(). | ||||