Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16470 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-54239 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: iommufd: Check for uptr overflow syzkaller found that setting up a map with a user VA that wraps past zero can trigger WARN_ONs, particularly from pin_user_pages weirdly returning 0 due to invalid arguments. Prevent creating a pages with a uptr and size that would math overflow. WARNING: CPU: 0 PID: 518 at drivers/iommu/iommufd/pages.c:793 pfn_reader_user_pin+0x2e6/0x390 Modules linked in: CPU: 0 PID: 518 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:pfn_reader_user_pin+0x2e6/0x390 Code: b1 11 e9 25 fe ff ff e8 28 e4 0f ff 31 ff 48 89 de e8 2e e6 0f ff 48 85 db 74 0a e8 14 e4 0f ff e9 4d ff ff ff e8 0a e4 0f ff <0f> 0b bb f2 ff ff ff e9 3c ff ff ff e8 f9 e3 0f ff ba 01 00 00 00 RSP: 0018:ffffc90000f9fa30 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff821e2b72 RDX: 0000000000000000 RSI: ffff888014184680 RDI: 0000000000000002 RBP: ffffc90000f9fa78 R08: 00000000000000ff R09: 0000000079de6f4e R10: ffffc90000f9f790 R11: ffff888014185418 R12: ffffc90000f9fc60 R13: 0000000000000002 R14: ffff888007879800 R15: 0000000000000000 FS: 00007f4227555740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000043 CR3: 000000000e748005 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> pfn_reader_next+0x14a/0x7b0 ? interval_tree_double_span_iter_update+0x11a/0x140 pfn_reader_first+0x140/0x1b0 iopt_pages_rw_slow+0x71/0x280 ? __this_cpu_preempt_check+0x20/0x30 iopt_pages_rw_access+0x2b2/0x5b0 iommufd_access_rw+0x19f/0x2f0 iommufd_test+0xd11/0x16f0 ? write_comp_data+0x2f/0x90 iommufd_fops_ioctl+0x206/0x330 __x64_sys_ioctl+0x10e/0x160 ? __pfx_iommufd_fops_ioctl+0x10/0x10 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc | ||||
| CVE-2023-54237 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net/smc: fix potential panic dues to unprotected smc_llc_srv_add_link() There is a certain chance to trigger the following panic: PID: 5900 TASK: ffff88c1c8af4100 CPU: 1 COMMAND: "kworker/1:48" #0 [ffff9456c1cc79a0] machine_kexec at ffffffff870665b7 #1 [ffff9456c1cc79f0] __crash_kexec at ffffffff871b4c7a #2 [ffff9456c1cc7ab0] crash_kexec at ffffffff871b5b60 #3 [ffff9456c1cc7ac0] oops_end at ffffffff87026ce7 #4 [ffff9456c1cc7ae0] page_fault_oops at ffffffff87075715 #5 [ffff9456c1cc7b58] exc_page_fault at ffffffff87ad0654 #6 [ffff9456c1cc7b80] asm_exc_page_fault at ffffffff87c00b62 [exception RIP: ib_alloc_mr+19] RIP: ffffffffc0c9cce3 RSP: ffff9456c1cc7c38 RFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000004 RDX: 0000000000000010 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffff88c1ea281d00 R8: 000000020a34ffff R9: ffff88c1350bbb20 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000 R13: 0000000000000010 R14: ffff88c1ab040a50 R15: ffff88c1ea281d00 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffff9456c1cc7c60] smc_ib_get_memory_region at ffffffffc0aff6df [smc] #8 [ffff9456c1cc7c88] smcr_buf_map_link at ffffffffc0b0278c [smc] #9 [ffff9456c1cc7ce0] __smc_buf_create at ffffffffc0b03586 [smc] The reason here is that when the server tries to create a second link, smc_llc_srv_add_link() has no protection and may add a new link to link group. This breaks the security environment protected by llc_conf_mutex. | ||||
| CVE-2023-54217 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: Revert "drm/msm: Add missing check and destroy for alloc_ordered_workqueue" This reverts commit 643b7d0869cc7f1f7a5ac7ca6bd25d88f54e31d0. A recent patch that tried to fix up the msm_drm_init() paths with respect to the workqueue but only ended up making things worse: First, the newly added calls to msm_drm_uninit() on early errors would trigger NULL-pointer dereferences, for example, as the kms pointer would not have been initialised. (Note that these paths were also modified by a second broken error handling patch which in effect cancelled out this part when merged.) Second, the newly added allocation sanity check would still leak the previously allocated drm device. Instead of trying to salvage what was badly broken (and clearly not tested), let's revert the bad commit so that clean and backportable fixes can be added in its place. Patchwork: https://patchwork.freedesktop.org/patch/525107/ | ||||
| CVE-2023-54225 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: net: ipa: only reset hashed tables when supported Last year, the code that manages GSI channel transactions switched from using spinlock-protected linked lists to using indexes into the ring buffer used for a channel. Recently, Google reported seeing transaction reference count underflows occasionally during shutdown. Doug Anderson found a way to reproduce the issue reliably, and bisected the issue to the commit that eliminated the linked lists and the lock. The root cause was ultimately determined to be related to unused transactions being committed as part of the modem shutdown cleanup activity. Unused transactions are not normally expected (except in error cases). The modem uses some ranges of IPA-resident memory, and whenever it shuts down we zero those ranges. In ipa_filter_reset_table() a transaction is allocated to zero modem filter table entries. If hashing is not supported, hashed table memory should not be zeroed. But currently nothing prevents that, and the result is an unused transaction. Something similar occurs when we zero routing table entries for the modem. By preventing any attempt to clear hashed tables when hashing is not supported, the reference count underflow is avoided in this case. Note that there likely remains an issue with properly freeing unused transactions (if they occur due to errors). This patch addresses only the underflows that Google originally reported. | ||||
| CVE-2023-54235 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: PCI/DOE: Fix destroy_work_on_stack() race The following debug object splat was observed in testing: ODEBUG: free active (active state 0) object: 0000000097d23782 object type: work_struct hint: doe_statemachine_work+0x0/0x510 WARNING: CPU: 1 PID: 71 at lib/debugobjects.c:514 debug_print_object+0x7d/0xb0 ... Workqueue: pci 0000:36:00.0 DOE [1 doe_statemachine_work RIP: 0010:debug_print_object+0x7d/0xb0 ... Call Trace: ? debug_print_object+0x7d/0xb0 ? __pfx_doe_statemachine_work+0x10/0x10 debug_object_free.part.0+0x11b/0x150 doe_statemachine_work+0x45e/0x510 process_one_work+0x1d4/0x3c0 This occurs because destroy_work_on_stack() was called after signaling the completion in the calling thread. This creates a race between destroy_work_on_stack() and the task->work struct going out of scope in pci_doe(). Signal the work complete after destroying the work struct. This is safe because signal_task_complete() is the final thing the work item does and the workqueue code is careful not to access the work struct after. | ||||
| CVE-2023-54243 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: netfilter: ebtables: fix table blob use-after-free We are not allowed to return an error at this point. Looking at the code it looks like ret is always 0 at this point, but its not. t = find_table_lock(net, repl->name, &ret, &ebt_mutex); ... this can return a valid table, with ret != 0. This bug causes update of table->private with the new blob, but then frees the blob right away in the caller. Syzbot report: BUG: KASAN: vmalloc-out-of-bounds in __ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168 Read of size 4 at addr ffffc90005425000 by task kworker/u4:4/74 Workqueue: netns cleanup_net Call Trace: kasan_report+0xbf/0x1f0 mm/kasan/report.c:517 __ebt_unregister_table+0xc00/0xcd0 net/bridge/netfilter/ebtables.c:1168 ebt_unregister_table+0x35/0x40 net/bridge/netfilter/ebtables.c:1372 ops_exit_list+0xb0/0x170 net/core/net_namespace.c:169 cleanup_net+0x4ee/0xb10 net/core/net_namespace.c:613 ... ip(6)tables appears to be ok (ret should be 0 at this point) but make this more obvious. | ||||
| CVE-2023-54319 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: pinctrl: at91-pio4: check return value of devm_kasprintf() devm_kasprintf() returns a pointer to dynamically allocated memory. Pointer could be NULL in case allocation fails. Check pointer validity. Identified with coccinelle (kmerr.cocci script). Depends-on: 1c4e5c470a56 ("pinctrl: at91: use devm_kasprintf() to avoid potential leaks") Depends-on: 5a8f9cf269e8 ("pinctrl: at91-pio4: use proper format specifier for unsigned int") | ||||
| CVE-2023-54299 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: typec: bus: verify partner exists in typec_altmode_attention Some usb hubs will negotiate DisplayPort Alt mode with the device but will then negotiate a data role swap after entering the alt mode. The data role swap causes the device to unregister all alt modes, however the usb hub will still send Attention messages even after failing to reregister the Alt Mode. type_altmode_attention currently does not verify whether or not a device's altmode partner exists, which results in a NULL pointer error when dereferencing the typec_altmode and typec_altmode_ops belonging to the altmode partner. Verify the presence of a device's altmode partner before sending the Attention message to the Alt Mode driver. | ||||
| CVE-2023-54288 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fortify the spinlock against deadlock by interrupt In the function ieee80211_tx_dequeue() there is a particular locking sequence: begin: spin_lock(&local->queue_stop_reason_lock); q_stopped = local->queue_stop_reasons[q]; spin_unlock(&local->queue_stop_reason_lock); However small the chance (increased by ftracetest), an asynchronous interrupt can occur in between of spin_lock() and spin_unlock(), and the interrupt routine will attempt to lock the same &local->queue_stop_reason_lock again. This will cause a costly reset of the CPU and the wifi device or an altogether hang in the single CPU and single core scenario. The only remaining spin_lock(&local->queue_stop_reason_lock) that did not disable interrupts was patched, which should prevent any deadlocks on the same CPU/core and the same wifi device. This is the probable trace of the deadlock: kernel: ================================ kernel: WARNING: inconsistent lock state kernel: 6.3.0-rc6-mt-20230401-00001-gf86822a1170f #4 Tainted: G W kernel: -------------------------------- kernel: inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. kernel: kworker/5:0/25656 [HC0[0]:SC0[0]:HE1:SE1] takes: kernel: ffff9d6190779478 (&local->queue_stop_reason_lock){+.?.}-{2:2}, at: return_to_handler+0x0/0x40 kernel: {IN-SOFTIRQ-W} state was registered at: kernel: lock_acquire+0xc7/0x2d0 kernel: _raw_spin_lock+0x36/0x50 kernel: ieee80211_tx_dequeue+0xb4/0x1330 [mac80211] kernel: iwl_mvm_mac_itxq_xmit+0xae/0x210 [iwlmvm] kernel: iwl_mvm_mac_wake_tx_queue+0x2d/0xd0 [iwlmvm] kernel: ieee80211_queue_skb+0x450/0x730 [mac80211] kernel: __ieee80211_xmit_fast.constprop.66+0x834/0xa50 [mac80211] kernel: __ieee80211_subif_start_xmit+0x217/0x530 [mac80211] kernel: ieee80211_subif_start_xmit+0x60/0x580 [mac80211] kernel: dev_hard_start_xmit+0xb5/0x260 kernel: __dev_queue_xmit+0xdbe/0x1200 kernel: neigh_resolve_output+0x166/0x260 kernel: ip_finish_output2+0x216/0xb80 kernel: __ip_finish_output+0x2a4/0x4d0 kernel: ip_finish_output+0x2d/0xd0 kernel: ip_output+0x82/0x2b0 kernel: ip_local_out+0xec/0x110 kernel: igmpv3_sendpack+0x5c/0x90 kernel: igmp_ifc_timer_expire+0x26e/0x4e0 kernel: call_timer_fn+0xa5/0x230 kernel: run_timer_softirq+0x27f/0x550 kernel: __do_softirq+0xb4/0x3a4 kernel: irq_exit_rcu+0x9b/0xc0 kernel: sysvec_apic_timer_interrupt+0x80/0xa0 kernel: asm_sysvec_apic_timer_interrupt+0x1f/0x30 kernel: _raw_spin_unlock_irqrestore+0x3f/0x70 kernel: free_to_partial_list+0x3d6/0x590 kernel: __slab_free+0x1b7/0x310 kernel: kmem_cache_free+0x52d/0x550 kernel: putname+0x5d/0x70 kernel: do_sys_openat2+0x1d7/0x310 kernel: do_sys_open+0x51/0x80 kernel: __x64_sys_openat+0x24/0x30 kernel: do_syscall_64+0x5c/0x90 kernel: entry_SYSCALL_64_after_hwframe+0x72/0xdc kernel: irq event stamp: 5120729 kernel: hardirqs last enabled at (5120729): [<ffffffff9d149936>] trace_graph_return+0xd6/0x120 kernel: hardirqs last disabled at (5120728): [<ffffffff9d149950>] trace_graph_return+0xf0/0x120 kernel: softirqs last enabled at (5069900): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40 kernel: softirqs last disabled at (5067555): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40 kernel: other info that might help us debug this: kernel: Possible unsafe locking scenario: kernel: CPU0 kernel: ---- kernel: lock(&local->queue_stop_reason_lock); kernel: <Interrupt> kernel: lock(&local->queue_stop_reason_lock); kernel: *** DEADLOCK *** kernel: 8 locks held by kworker/5:0/25656: kernel: #0: ffff9d618009d138 ((wq_completion)events_freezable){+.+.}-{0:0}, at: process_one_work+0x1ca/0x530 kernel: #1: ffffb1ef4637fe68 ((work_completion)(&local->restart_work)){+.+.}-{0:0}, at: process_one_work+0x1ce/0x530 kernel: #2: ffffffff9f166548 (rtnl_mutex){+.+.}-{3:3}, at: return_to_handler+0x0/0x40 kernel: #3: ffff9d619 ---truncated--- | ||||
| CVE-2023-54295 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type spi_nor_set_erase_type() was used either to set or to mask out an erase type. When we used it to mask out an erase type a shift-out-of-bounds was hit: UBSAN: shift-out-of-bounds in drivers/mtd/spi-nor/core.c:2237:24 shift exponent 4294967295 is too large for 32-bit type 'int' The setting of the size_{shift, mask} and of the opcode are unnecessary when the erase size is zero, as throughout the code just the erase size is considered to determine whether an erase type is supported or not. Setting the opcode to 0xFF was wrong too as nobody guarantees that 0xFF is an unused opcode. Thus when masking out an erase type, just set the erase size to zero. This will fix the shift-out-of-bounds. [ta: refine changes, new commit message, fix compilation error] | ||||
| CVE-2023-54262 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Don't clone flow post action attributes second time The code already clones post action attributes in mlx5e_clone_flow_attr_for_post_act(). Creating another copy in mlx5e_tc_post_act_add() is a erroneous leftover from original implementation. Instead, assign handle->attribute to post_attr provided by the caller. Note that cloning the attribute second time is not just wasteful but also causes issues like second copy not being properly updated in neigh update code which leads to following use-after-free: Feb 21 09:02:00 c-237-177-40-045 kernel: BUG: KASAN: use-after-free in mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_report+0xbb/0x1a0 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30 Feb 21 09:02:00 c-237-177-40-045 kernel: __kasan_kmalloc+0x7a/0x90 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_free_info+0x2a/0x40 Feb 21 09:02:00 c-237-177-40-045 kernel: ____kasan_slab_free+0x11a/0x1b0 Feb 21 09:02:00 c-237-177-40-045 kernel: page dumped because: kasan: bad access detected Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0: mlx5_cmd_out_err:803:(pid 8833): SET_FLOW_TABLE_ENTRY(0x936) op_mod(0x0) failed, status bad resource state(0x9), syndrome (0xf2ff71), err(-22) Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0 enp8s0f0: Failed to add post action rule Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_core 0000:08:00.0: mlx5e_tc_encap_flows_add:190:(pid 8833): Failed to update flow post acts, -22 Feb 21 09:02:00 c-237-177-40-045 kernel: Call Trace: Feb 21 09:02:00 c-237-177-40-045 kernel: <TASK> Feb 21 09:02:00 c-237-177-40-045 kernel: dump_stack_lvl+0x57/0x7d Feb 21 09:02:00 c-237-177-40-045 kernel: print_report+0x170/0x471 Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_report+0xbb/0x1a0 Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_cmd_set_fte+0x200d/0x24c0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: ? __module_address.part.0+0x62/0x200 Feb 21 09:02:00 c-237-177-40-045 kernel: ? mlx5_cmd_stub_create_flow_table+0xd0/0xd0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: ? __raw_spin_lock_init+0x3b/0x110 Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_cmd_create_fte+0x80/0xb0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: add_rule_fg+0xe80/0x19c0 [mlx5_core] -- Feb 21 09:02:00 c-237-177-40-045 kernel: Allocated by task 13476: Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_stack+0x1e/0x40 Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_set_track+0x21/0x30 Feb 21 09:02:00 c-237-177-40-045 kernel: __kasan_kmalloc+0x7a/0x90 Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5_packet_reformat_alloc+0x7b/0x230 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_tc_tun_create_header_ipv4+0x977/0xf10 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_attach_encap+0x15b4/0x1e10 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: post_process_attr+0x305/0xa30 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_tc_add_fdb_flow+0x4c0/0xcf0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: __mlx5e_add_fdb_flow+0x7cf/0xe90 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_configure_flower+0xcaa/0x4b90 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_rep_setup_tc_cls_flower+0x99/0x1b0 [mlx5_core] Feb 21 09:02:00 c-237-177-40-045 kernel: mlx5e_rep_setup_tc_cb+0x133/0x1e0 [mlx5_core] -- Feb 21 09:02:00 c-237-177-40-045 kernel: Freed by task 8833: Feb 21 09:02:00 c-237-177-40-045 kernel: kasan_save_s ---truncated--- | ||||
| CVE-2023-54297 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix memory leak after finding block group with super blocks At exclude_super_stripes(), if we happen to find a block group that has super blocks mapped to it and we are on a zoned filesystem, we error out as this is not supposed to happen, indicating either a bug or maybe some memory corruption for example. However we are exiting the function without freeing the memory allocated for the logical address of the super blocks. Fix this by freeing the logical address. | ||||
| CVE-2023-54267 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries: Rework lppaca_shared_proc() to avoid DEBUG_PREEMPT lppaca_shared_proc() takes a pointer to the lppaca which is typically accessed through get_lppaca(). With DEBUG_PREEMPT enabled, this leads to checking if preemption is enabled, for example: BUG: using smp_processor_id() in preemptible [00000000] code: grep/10693 caller is lparcfg_data+0x408/0x19a0 CPU: 4 PID: 10693 Comm: grep Not tainted 6.5.0-rc3 #2 Call Trace: dump_stack_lvl+0x154/0x200 (unreliable) check_preemption_disabled+0x214/0x220 lparcfg_data+0x408/0x19a0 ... This isn't actually a problem however, as it does not matter which lppaca is accessed, the shared proc state will be the same. vcpudispatch_stats_procfs_init() already works around this by disabling preemption, but the lparcfg code does not, erroring any time /proc/powerpc/lparcfg is accessed with DEBUG_PREEMPT enabled. Instead of disabling preemption on the caller side, rework lppaca_shared_proc() to not take a pointer and instead directly access the lppaca, bypassing any potential preemption checks. [mpe: Rework to avoid needing a definition in paca.h and lppaca.h] | ||||
| CVE-2023-54258 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cifs: fix potential oops in cifs_oplock_break With deferred close we can have closes that race with lease breaks, and so with the current checks for whether to send the lease response, oplock_response(), this can mean that an unmount (kill_sb) can occur just before we were checking if the tcon->ses is valid. See below: [Fri Aug 4 04:12:50 2023] RIP: 0010:cifs_oplock_break+0x1f7/0x5b0 [cifs] [Fri Aug 4 04:12:50 2023] Code: 7d a8 48 8b 7d c0 c0 e9 02 48 89 45 b8 41 89 cf e8 3e f5 ff ff 4c 89 f7 41 83 e7 01 e8 82 b3 03 f2 49 8b 45 50 48 85 c0 74 5e <48> 83 78 60 00 74 57 45 84 ff 75 52 48 8b 43 98 48 83 eb 68 48 39 [Fri Aug 4 04:12:50 2023] RSP: 0018:ffffb30607ddbdf8 EFLAGS: 00010206 [Fri Aug 4 04:12:50 2023] RAX: 632d223d32612022 RBX: ffff97136944b1e0 RCX: 0000000080100009 [Fri Aug 4 04:12:50 2023] RDX: 0000000000000001 RSI: 0000000080100009 RDI: ffff97136944b188 [Fri Aug 4 04:12:50 2023] RBP: ffffb30607ddbe58 R08: 0000000000000001 R09: ffffffffc08e0900 [Fri Aug 4 04:12:50 2023] R10: 0000000000000001 R11: 000000000000000f R12: ffff97136944b138 [Fri Aug 4 04:12:50 2023] R13: ffff97149147c000 R14: ffff97136944b188 R15: 0000000000000000 [Fri Aug 4 04:12:50 2023] FS: 0000000000000000(0000) GS:ffff9714f7c00000(0000) knlGS:0000000000000000 [Fri Aug 4 04:12:50 2023] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [Fri Aug 4 04:12:50 2023] CR2: 00007fd8de9c7590 CR3: 000000011228e000 CR4: 0000000000350ef0 [Fri Aug 4 04:12:50 2023] Call Trace: [Fri Aug 4 04:12:50 2023] <TASK> [Fri Aug 4 04:12:50 2023] process_one_work+0x225/0x3d0 [Fri Aug 4 04:12:50 2023] worker_thread+0x4d/0x3e0 [Fri Aug 4 04:12:50 2023] ? process_one_work+0x3d0/0x3d0 [Fri Aug 4 04:12:50 2023] kthread+0x12a/0x150 [Fri Aug 4 04:12:50 2023] ? set_kthread_struct+0x50/0x50 [Fri Aug 4 04:12:50 2023] ret_from_fork+0x22/0x30 [Fri Aug 4 04:12:50 2023] </TASK> To fix this change the ordering of the checks before sending the oplock_response to first check if the openFileList is empty. | ||||
| CVE-2023-54254 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/ttm: Don't leak a resource on eviction error On eviction errors other than -EMULTIHOP we were leaking a resource. Fix. v2: - Avoid yet another goto (Andi Shyti) | ||||
| CVE-2023-54268 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: debugobjects: Don't wake up kswapd from fill_pool() syzbot is reporting a lockdep warning in fill_pool() because the allocation from debugobjects is using GFP_ATOMIC, which is (__GFP_HIGH | __GFP_KSWAPD_RECLAIM) and therefore tries to wake up kswapd, which acquires kswapd_wait::lock. Since fill_pool() might be called with arbitrary locks held, fill_pool() should not assume that acquiring kswapd_wait::lock is safe. Use __GFP_HIGH instead and remove __GFP_NORETRY as it is pointless for !__GFP_DIRECT_RECLAIM allocation. | ||||
| CVE-2023-54236 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/net_failover: fix txq exceeding warning The failover txq is inited as 16 queues. when a packet is transmitted from the failover device firstly, the failover device will select the queue which is returned from the primary device if the primary device is UP and running. If the primary device txq is bigger than the default 16, it can lead to the following warning: eth0 selects TX queue 18, but real number of TX queues is 16 The warning backtrace is: [ 32.146376] CPU: 18 PID: 9134 Comm: chronyd Tainted: G E 6.2.8-1.el7.centos.x86_64 #1 [ 32.147175] Hardware name: Red Hat KVM, BIOS 1.10.2-3.el7_4.1 04/01/2014 [ 32.147730] Call Trace: [ 32.147971] <TASK> [ 32.148183] dump_stack_lvl+0x48/0x70 [ 32.148514] dump_stack+0x10/0x20 [ 32.148820] netdev_core_pick_tx+0xb1/0xe0 [ 32.149180] __dev_queue_xmit+0x529/0xcf0 [ 32.149533] ? __check_object_size.part.0+0x21c/0x2c0 [ 32.149967] ip_finish_output2+0x278/0x560 [ 32.150327] __ip_finish_output+0x1fe/0x2f0 [ 32.150690] ip_finish_output+0x2a/0xd0 [ 32.151032] ip_output+0x7a/0x110 [ 32.151337] ? __pfx_ip_finish_output+0x10/0x10 [ 32.151733] ip_local_out+0x5e/0x70 [ 32.152054] ip_send_skb+0x19/0x50 [ 32.152366] udp_send_skb.isra.0+0x163/0x3a0 [ 32.152736] udp_sendmsg+0xba8/0xec0 [ 32.153060] ? __folio_memcg_unlock+0x25/0x60 [ 32.153445] ? __pfx_ip_generic_getfrag+0x10/0x10 [ 32.153854] ? sock_has_perm+0x85/0xa0 [ 32.154190] inet_sendmsg+0x6d/0x80 [ 32.154508] ? inet_sendmsg+0x6d/0x80 [ 32.154838] sock_sendmsg+0x62/0x70 [ 32.155152] ____sys_sendmsg+0x134/0x290 [ 32.155499] ___sys_sendmsg+0x81/0xc0 [ 32.155828] ? _get_random_bytes.part.0+0x79/0x1a0 [ 32.156240] ? ip4_datagram_release_cb+0x5f/0x1e0 [ 32.156649] ? get_random_u16+0x69/0xf0 [ 32.156989] ? __fget_light+0xcf/0x110 [ 32.157326] __sys_sendmmsg+0xc4/0x210 [ 32.157657] ? __sys_connect+0xb7/0xe0 [ 32.157995] ? __audit_syscall_entry+0xce/0x140 [ 32.158388] ? syscall_trace_enter.isra.0+0x12c/0x1a0 [ 32.158820] __x64_sys_sendmmsg+0x24/0x30 [ 32.159171] do_syscall_64+0x38/0x90 [ 32.159493] entry_SYSCALL_64_after_hwframe+0x72/0xdc Fix that by reducing txq number as the non-existent primary-dev does. | ||||
| CVE-2023-54274 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/srpt: Add a check for valid 'mad_agent' pointer When unregistering MAD agent, srpt module has a non-null check for 'mad_agent' pointer before invoking ib_unregister_mad_agent(). This check can pass if 'mad_agent' variable holds an error value. The 'mad_agent' can have an error value for a short window when srpt_add_one() and srpt_remove_one() is executed simultaneously. In srpt module, added a valid pointer check for 'sport->mad_agent' before unregistering MAD agent. This issue can hit when RoCE driver unregisters ib_device Stack Trace: ------------ BUG: kernel NULL pointer dereference, address: 000000000000004d PGD 145003067 P4D 145003067 PUD 2324fe067 PMD 0 Oops: 0002 [#1] PREEMPT SMP NOPTI CPU: 10 PID: 4459 Comm: kworker/u80:0 Kdump: loaded Tainted: P Hardware name: Dell Inc. PowerEdge R640/06NR82, BIOS 2.5.4 01/13/2020 Workqueue: bnxt_re bnxt_re_task [bnxt_re] RIP: 0010:_raw_spin_lock_irqsave+0x19/0x40 Call Trace: ib_unregister_mad_agent+0x46/0x2f0 [ib_core] IPv6: ADDRCONF(NETDEV_CHANGE): bond0: link becomes ready ? __schedule+0x20b/0x560 srpt_unregister_mad_agent+0x93/0xd0 [ib_srpt] srpt_remove_one+0x20/0x150 [ib_srpt] remove_client_context+0x88/0xd0 [ib_core] bond0: (slave p2p1): link status definitely up, 100000 Mbps full duplex disable_device+0x8a/0x160 [ib_core] bond0: active interface up! ? kernfs_name_hash+0x12/0x80 (NULL device *): Bonding Info Received: rdev: 000000006c0b8247 __ib_unregister_device+0x42/0xb0 [ib_core] (NULL device *): Master: mode: 4 num_slaves:2 ib_unregister_device+0x22/0x30 [ib_core] (NULL device *): Slave: id: 105069936 name:p2p1 link:0 state:0 bnxt_re_stopqps_and_ib_uninit+0x83/0x90 [bnxt_re] bnxt_re_alloc_lag+0x12e/0x4e0 [bnxt_re] | ||||
| CVE-2023-54277 | 1 Linux | 1 Linux Kernel | 2025-12-31 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: fbdev: udlfb: Fix endpoint check The syzbot fuzzer detected a problem in the udlfb driver, caused by an endpoint not having the expected type: usb 1-1: Read EDID byte 0 failed: -71 usb 1-1: Unable to get valid EDID from device/display ------------[ cut here ]------------ usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 0 PID: 9 at drivers/usb/core/urb.c:504 usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 Modules linked in: CPU: 0 PID: 9 Comm: kworker/0:1 Not tainted 6.4.0-rc1-syzkaller-00016-ga4422ff22142 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/28/2023 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_submit_urb+0xed6/0x1880 drivers/usb/core/urb.c:504 ... Call Trace: <TASK> dlfb_submit_urb+0x92/0x180 drivers/video/fbdev/udlfb.c:1980 dlfb_set_video_mode+0x21f0/0x2950 drivers/video/fbdev/udlfb.c:315 dlfb_ops_set_par+0x2a7/0x8d0 drivers/video/fbdev/udlfb.c:1111 dlfb_usb_probe+0x149a/0x2710 drivers/video/fbdev/udlfb.c:1743 The current approach for this issue failed to catch the problem because it only checks for the existence of a bulk-OUT endpoint; it doesn't check whether this endpoint is the one that the driver will actually use. We can fix the problem by instead checking that the endpoint used by the driver does exist and is bulk-OUT. | ||||
| CVE-2023-54238 | 1 Linux | 1 Linux Kernel | 2025-12-31 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: mlx5: fix skb leak while fifo resync and push During ptp resync operation SKBs were poped from the fifo but were never freed neither by napi_consume nor by dev_kfree_skb_any. Add call to napi_consume_skb to properly free SKBs. Another leak was happening because mlx5e_skb_fifo_has_room() had an error in the check. Comparing free running counters works well unless C promotes the types to something wider than the counter. In this case counters are u16 but the result of the substraction is promouted to int and it causes wrong result (negative value) of the check when producer have already overlapped but consumer haven't yet. Explicit cast to u16 fixes the issue. | ||||