Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel E4s
Subscriptions
Total
1589 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-35969 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix race condition between ipv6_get_ifaddr and ipv6_del_addr Although ipv6_get_ifaddr walks inet6_addr_lst under the RCU lock, it still means hlist_for_each_entry_rcu can return an item that got removed from the list. The memory itself of such item is not freed thanks to RCU but nothing guarantees the actual content of the memory is sane. In particular, the reference count can be zero. This can happen if ipv6_del_addr is called in parallel. ipv6_del_addr removes the entry from inet6_addr_lst (hlist_del_init_rcu(&ifp->addr_lst)) and drops all references (__in6_ifa_put(ifp) + in6_ifa_put(ifp)). With bad enough timing, this can happen: 1. In ipv6_get_ifaddr, hlist_for_each_entry_rcu returns an entry. 2. Then, the whole ipv6_del_addr is executed for the given entry. The reference count drops to zero and kfree_rcu is scheduled. 3. ipv6_get_ifaddr continues and tries to increments the reference count (in6_ifa_hold). 4. The rcu is unlocked and the entry is freed. 5. The freed entry is returned. Prevent increasing of the reference count in such case. The name in6_ifa_hold_safe is chosen to mimic the existing fib6_info_hold_safe. [ 41.506330] refcount_t: addition on 0; use-after-free. [ 41.506760] WARNING: CPU: 0 PID: 595 at lib/refcount.c:25 refcount_warn_saturate+0xa5/0x130 [ 41.507413] Modules linked in: veth bridge stp llc [ 41.507821] CPU: 0 PID: 595 Comm: python3 Not tainted 6.9.0-rc2.main-00208-g49563be82afa #14 [ 41.508479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) [ 41.509163] RIP: 0010:refcount_warn_saturate+0xa5/0x130 [ 41.509586] Code: ad ff 90 0f 0b 90 90 c3 cc cc cc cc 80 3d c0 30 ad 01 00 75 a0 c6 05 b7 30 ad 01 01 90 48 c7 c7 38 cc 7a 8c e8 cc 18 ad ff 90 <0f> 0b 90 90 c3 cc cc cc cc 80 3d 98 30 ad 01 00 0f 85 75 ff ff ff [ 41.510956] RSP: 0018:ffffbda3c026baf0 EFLAGS: 00010282 [ 41.511368] RAX: 0000000000000000 RBX: ffff9e9c46914800 RCX: 0000000000000000 [ 41.511910] RDX: ffff9e9c7ec29c00 RSI: ffff9e9c7ec1c900 RDI: ffff9e9c7ec1c900 [ 41.512445] RBP: ffff9e9c43660c9c R08: 0000000000009ffb R09: 00000000ffffdfff [ 41.512998] R10: 00000000ffffdfff R11: ffffffff8ca58a40 R12: ffff9e9c4339a000 [ 41.513534] R13: 0000000000000001 R14: ffff9e9c438a0000 R15: ffffbda3c026bb48 [ 41.514086] FS: 00007fbc4cda1740(0000) GS:ffff9e9c7ec00000(0000) knlGS:0000000000000000 [ 41.514726] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 41.515176] CR2: 000056233b337d88 CR3: 000000000376e006 CR4: 0000000000370ef0 [ 41.515713] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 41.516252] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 41.516799] Call Trace: [ 41.517037] <TASK> [ 41.517249] ? __warn+0x7b/0x120 [ 41.517535] ? refcount_warn_saturate+0xa5/0x130 [ 41.517923] ? report_bug+0x164/0x190 [ 41.518240] ? handle_bug+0x3d/0x70 [ 41.518541] ? exc_invalid_op+0x17/0x70 [ 41.520972] ? asm_exc_invalid_op+0x1a/0x20 [ 41.521325] ? refcount_warn_saturate+0xa5/0x130 [ 41.521708] ipv6_get_ifaddr+0xda/0xe0 [ 41.522035] inet6_rtm_getaddr+0x342/0x3f0 [ 41.522376] ? __pfx_inet6_rtm_getaddr+0x10/0x10 [ 41.522758] rtnetlink_rcv_msg+0x334/0x3d0 [ 41.523102] ? netlink_unicast+0x30f/0x390 [ 41.523445] ? __pfx_rtnetlink_rcv_msg+0x10/0x10 [ 41.523832] netlink_rcv_skb+0x53/0x100 [ 41.524157] netlink_unicast+0x23b/0x390 [ 41.524484] netlink_sendmsg+0x1f2/0x440 [ 41.524826] __sys_sendto+0x1d8/0x1f0 [ 41.525145] __x64_sys_sendto+0x1f/0x30 [ 41.525467] do_syscall_64+0xa5/0x1b0 [ 41.525794] entry_SYSCALL_64_after_hwframe+0x72/0x7a [ 41.526213] RIP: 0033:0x7fbc4cfcea9a [ 41.526528] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 7e c3 0f 1f 44 00 00 41 54 48 83 ec 30 44 89 [ 41.527942] RSP: 002b:00007f ---truncated--- | ||||
CVE-2024-35960 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 9.1 Critical |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Properly link new fs rules into the tree Previously, add_rule_fg would only add newly created rules from the handle into the tree when they had a refcount of 1. On the other hand, create_flow_handle tries hard to find and reference already existing identical rules instead of creating new ones. These two behaviors can result in a situation where create_flow_handle 1) creates a new rule and references it, then 2) in a subsequent step during the same handle creation references it again, resulting in a rule with a refcount of 2 that is not linked into the tree, will have a NULL parent and root and will result in a crash when the flow group is deleted because del_sw_hw_rule, invoked on rule deletion, assumes node->parent is != NULL. This happened in the wild, due to another bug related to incorrect handling of duplicate pkt_reformat ids, which lead to the code in create_flow_handle incorrectly referencing a just-added rule in the same flow handle, resulting in the problem described above. Full details are at [1]. This patch changes add_rule_fg to add new rules without parents into the tree, properly initializing them and avoiding the crash. This makes it more consistent with how rules are added to an FTE in create_flow_handle. | ||||
CVE-2024-35958 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: ena: Fix incorrect descriptor free behavior ENA has two types of TX queues: - queues which only process TX packets arriving from the network stack - queues which only process TX packets forwarded to it by XDP_REDIRECT or XDP_TX instructions The ena_free_tx_bufs() cycles through all descriptors in a TX queue and unmaps + frees every descriptor that hasn't been acknowledged yet by the device (uncompleted TX transactions). The function assumes that the processed TX queue is necessarily from the first category listed above and ends up using napi_consume_skb() for descriptors belonging to an XDP specific queue. This patch solves a bug in which, in case of a VF reset, the descriptors aren't freed correctly, leading to crashes. | ||||
CVE-2024-35898 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_flowtable_type_get() nft_unregister_flowtable_type() within nf_flow_inet_module_exit() can concurrent with __nft_flowtable_type_get() within nf_tables_newflowtable(). And thhere is not any protection when iterate over nf_tables_flowtables list in __nft_flowtable_type_get(). Therefore, there is pertential data-race of nf_tables_flowtables list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_flowtables list in __nft_flowtable_type_get(), and use rcu_read_lock() in the caller nft_flowtable_type_get() to protect the entire type query process. | ||||
CVE-2024-35897 | 1 Redhat | 3 Enterprise Linux, Rhel E4s, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: discard table flag update with pending basechain deletion Hook unregistration is deferred to the commit phase, same occurs with hook updates triggered by the table dormant flag. When both commands are combined, this results in deleting a basechain while leaving its hook still registered in the core. | ||||
CVE-2024-35884 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 8.8 High |
In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560 | ||||
CVE-2024-35852 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix memory leak when canceling rehash work The rehash delayed work is rescheduled with a delay if the number of credits at end of the work is not negative as supposedly it means that the migration ended. Otherwise, it is rescheduled immediately. After "mlxsw: spectrum_acl_tcam: Fix possible use-after-free during rehash" the above is no longer accurate as a non-negative number of credits is no longer indicative of the migration being done. It can also happen if the work encountered an error in which case the migration will resume the next time the work is scheduled. The significance of the above is that it is possible for the work to be pending and associated with hints that were allocated when the migration started. This leads to the hints being leaked [1] when the work is canceled while pending as part of ACL region dismantle. Fix by freeing the hints if hints are associated with a work that was canceled while pending. Blame the original commit since the reliance on not having a pending work associated with hints is fragile. [1] unreferenced object 0xffff88810e7c3000 (size 256): comm "kworker/0:16", pid 176, jiffies 4295460353 hex dump (first 32 bytes): 00 30 95 11 81 88 ff ff 61 00 00 00 00 00 00 80 .0......a....... 00 00 61 00 40 00 00 00 00 00 00 00 04 00 00 00 ..a.@........... backtrace (crc 2544ddb9): [<00000000cf8cfab3>] kmalloc_trace+0x23f/0x2a0 [<000000004d9a1ad9>] objagg_hints_get+0x42/0x390 [<000000000b143cf3>] mlxsw_sp_acl_erp_rehash_hints_get+0xca/0x400 [<0000000059bdb60a>] mlxsw_sp_acl_tcam_vregion_rehash_work+0x868/0x1160 [<00000000e81fd734>] process_one_work+0x59c/0xf20 [<00000000ceee9e81>] worker_thread+0x799/0x12c0 [<00000000bda6fe39>] kthread+0x246/0x300 [<0000000070056d23>] ret_from_fork+0x34/0x70 [<00000000dea2b93e>] ret_from_fork_asm+0x1a/0x30 | ||||
CVE-2024-35845 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 9.1 Critical |
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: dbg-tlv: ensure NUL termination The iwl_fw_ini_debug_info_tlv is used as a string, so we must ensure the string is terminated correctly before using it. | ||||
CVE-2024-35823 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers. | ||||
CVE-2024-35789 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes When moving a station out of a VLAN and deleting the VLAN afterwards, the fast_rx entry still holds a pointer to the VLAN's netdev, which can cause use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx after the VLAN change. | ||||
CVE-2024-33621 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 2.3 Low |
In the Linux kernel, the following vulnerability has been resolved: ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path. WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70 Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:sk_mc_loop+0x2d/0x70 Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212 RAX: 0000000000000011 RBX: ffff91e585793e00 RCX: 0000000002c6a001 RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000 RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00 R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12: ffff91e58132d000 R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000 FS: 0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? __warn (kernel/panic.c:693) ? sk_mc_loop (net/core/sock.c:760) ? report_bug (lib/bug.c:201 lib/bug.c:219) ? handle_bug (arch/x86/kernel/traps.c:239) ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) ? sk_mc_loop (net/core/sock.c:760) ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1)) ? nf_hook_slow (net/netfilter/core.c:626) ip6_finish_output (net/ipv6/ip6_output.c:222) ? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215) ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan dev_hard_start_xmit (net/core/dev.c:3594) sch_direct_xmit (net/sched/sch_generic.c:343) __qdisc_run (net/sched/sch_generic.c:416) net_tx_action (net/core/dev.c:5286) handle_softirqs (kernel/softirq.c:555) __irq_exit_rcu (kernel/softirq.c:589) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043) The warning triggers as this: packet_sendmsg packet_snd //skb->sk is packet sk __dev_queue_xmit __dev_xmit_skb //q->enqueue is not NULL __qdisc_run sch_direct_xmit dev_hard_start_xmit ipvlan_start_xmit ipvlan_xmit_mode_l3 //l3 mode ipvlan_process_outbound //vepa flag ipvlan_process_v6_outbound ip6_local_out __ip6_finish_output ip6_finish_output2 //multicast packet sk_mc_loop //sk->sk_family is AF_PACKET Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this. | ||||
CVE-2024-27403 | 1 Redhat | 3 Enterprise Linux, Rhel E4s, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_flow_offload: reset dst in route object after setting up flow dst is transferred to the flow object, route object does not own it anymore. Reset dst in route object, otherwise if flow_offload_add() fails, error path releases dst twice, leading to a refcount underflow. | ||||
CVE-2024-27397 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: use timestamp to check for set element timeout Add a timestamp field at the beginning of the transaction, store it in the nftables per-netns area. Update set backend .insert, .deactivate and sync gc path to use the timestamp, this avoids that an element expires while control plane transaction is still unfinished. .lookup and .update, which are used from packet path, still use the current time to check if the element has expired. And .get path and dump also since this runs lockless under rcu read size lock. Then, there is async gc which also needs to check the current time since it runs asynchronously from a workqueue. | ||||
CVE-2024-27393 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Rhel E4s and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: xen-netfront: Add missing skb_mark_for_recycle Notice that skb_mark_for_recycle() is introduced later than fixes tag in commit 6a5bcd84e886 ("page_pool: Allow drivers to hint on SKB recycling"). It is believed that fixes tag were missing a call to page_pool_release_page() between v5.9 to v5.14, after which is should have used skb_mark_for_recycle(). Since v6.6 the call page_pool_release_page() were removed (in commit 535b9c61bdef ("net: page_pool: hide page_pool_release_page()") and remaining callers converted (in commit 6bfef2ec0172 ("Merge branch 'net-page_pool-remove-page_pool_release_page'")). This leak became visible in v6.8 via commit dba1b8a7ab68 ("mm/page_pool: catch page_pool memory leaks"). | ||||
CVE-2024-27020 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 7 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get() nft_unregister_expr() can concurrent with __nft_expr_type_get(), and there is not any protection when iterate over nf_tables_expressions list in __nft_expr_type_get(). Therefore, there is potential data-race of nf_tables_expressions list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_expressions list in __nft_expr_type_get(), and use rcu_read_lock() in the caller nft_expr_type_get() to protect the entire type query process. | ||||
CVE-2024-27019 | 3 Fedoraproject, Linux, Redhat | 7 Fedora, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process. | ||||
CVE-2024-26982 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [[email protected]: whitespace fix] | ||||
CVE-2024-26961 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: mac802154: fix llsec key resources release in mac802154_llsec_key_del mac802154_llsec_key_del() can free resources of a key directly without following the RCU rules for waiting before the end of a grace period. This may lead to use-after-free in case llsec_lookup_key() is traversing the list of keys in parallel with a key deletion: refcount_t: addition on 0; use-after-free. WARNING: CPU: 4 PID: 16000 at lib/refcount.c:25 refcount_warn_saturate+0x162/0x2a0 Modules linked in: CPU: 4 PID: 16000 Comm: wpan-ping Not tainted 6.7.0 #19 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 RIP: 0010:refcount_warn_saturate+0x162/0x2a0 Call Trace: <TASK> llsec_lookup_key.isra.0+0x890/0x9e0 mac802154_llsec_encrypt+0x30c/0x9c0 ieee802154_subif_start_xmit+0x24/0x1e0 dev_hard_start_xmit+0x13e/0x690 sch_direct_xmit+0x2ae/0xbc0 __dev_queue_xmit+0x11dd/0x3c20 dgram_sendmsg+0x90b/0xd60 __sys_sendto+0x466/0x4c0 __x64_sys_sendto+0xe0/0x1c0 do_syscall_64+0x45/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Also, ieee802154_llsec_key_entry structures are not freed by mac802154_llsec_key_del(): unreferenced object 0xffff8880613b6980 (size 64): comm "iwpan", pid 2176, jiffies 4294761134 (age 60.475s) hex dump (first 32 bytes): 78 0d 8f 18 80 88 ff ff 22 01 00 00 00 00 ad de x......."....... 00 00 00 00 00 00 00 00 03 00 cd ab 00 00 00 00 ................ backtrace: [<ffffffff81dcfa62>] __kmem_cache_alloc_node+0x1e2/0x2d0 [<ffffffff81c43865>] kmalloc_trace+0x25/0xc0 [<ffffffff88968b09>] mac802154_llsec_key_add+0xac9/0xcf0 [<ffffffff8896e41a>] ieee802154_add_llsec_key+0x5a/0x80 [<ffffffff8892adc6>] nl802154_add_llsec_key+0x426/0x5b0 [<ffffffff86ff293e>] genl_family_rcv_msg_doit+0x1fe/0x2f0 [<ffffffff86ff46d1>] genl_rcv_msg+0x531/0x7d0 [<ffffffff86fee7a9>] netlink_rcv_skb+0x169/0x440 [<ffffffff86ff1d88>] genl_rcv+0x28/0x40 [<ffffffff86fec15c>] netlink_unicast+0x53c/0x820 [<ffffffff86fecd8b>] netlink_sendmsg+0x93b/0xe60 [<ffffffff86b91b35>] ____sys_sendmsg+0xac5/0xca0 [<ffffffff86b9c3dd>] ___sys_sendmsg+0x11d/0x1c0 [<ffffffff86b9c65a>] __sys_sendmsg+0xfa/0x1d0 [<ffffffff88eadbf5>] do_syscall_64+0x45/0xf0 [<ffffffff890000ea>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 Handle the proper resource release in the RCU callback function mac802154_llsec_key_del_rcu(). Note that if llsec_lookup_key() finds a key, it gets a refcount via llsec_key_get() and locally copies key id from key_entry (which is a list element). So it's safe to call llsec_key_put() and free the list entry after the RCU grace period elapses. Found by Linux Verification Center (linuxtesting.org). | ||||
CVE-2024-26923 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-05-04 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix garbage collector racing against connect() Garbage collector does not take into account the risk of embryo getting enqueued during the garbage collection. If such embryo has a peer that carries SCM_RIGHTS, two consecutive passes of scan_children() may see a different set of children. Leading to an incorrectly elevated inflight count, and then a dangling pointer within the gc_inflight_list. sockets are AF_UNIX/SOCK_STREAM S is an unconnected socket L is a listening in-flight socket bound to addr, not in fdtable V's fd will be passed via sendmsg(), gets inflight count bumped connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc() ---------------- ------------------------- ----------- NS = unix_create1() skb1 = sock_wmalloc(NS) L = unix_find_other(addr) unix_state_lock(L) unix_peer(S) = NS // V count=1 inflight=0 NS = unix_peer(S) skb2 = sock_alloc() skb_queue_tail(NS, skb2[V]) // V became in-flight // V count=2 inflight=1 close(V) // V count=1 inflight=1 // GC candidate condition met for u in gc_inflight_list: if (total_refs == inflight_refs) add u to gc_candidates // gc_candidates={L, V} for u in gc_candidates: scan_children(u, dec_inflight) // embryo (skb1) was not // reachable from L yet, so V's // inflight remains unchanged __skb_queue_tail(L, skb1) unix_state_unlock(L) for u in gc_candidates: if (u.inflight) scan_children(u, inc_inflight_move_tail) // V count=1 inflight=2 (!) If there is a GC-candidate listening socket, lock/unlock its state. This makes GC wait until the end of any ongoing connect() to that socket. After flipping the lock, a possibly SCM-laden embryo is already enqueued. And if there is another embryo coming, it can not possibly carry SCM_RIGHTS. At this point, unix_inflight() can not happen because unix_gc_lock is already taken. Inflight graph remains unaffected. | ||||
CVE-2024-26870 | 3 Debian, Linux, Redhat | 7 Debian Linux, Linux Kernel, Enterprise Linux and 4 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102 A call to listxattr() with a buffer size = 0 returns the actual size of the buffer needed for a subsequent call. When size > 0, nfs4_listxattr() does not return an error because either generic_listxattr() or nfs4_listxattr_nfs4_label() consumes exactly all the bytes then size is 0 when calling nfs4_listxattr_nfs4_user() which then triggers the following kernel BUG: [ 99.403778] kernel BUG at mm/usercopy.c:102! [ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1 [ 99.415827] Call trace: [ 99.415985] usercopy_abort+0x70/0xa0 [ 99.416227] __check_heap_object+0x134/0x158 [ 99.416505] check_heap_object+0x150/0x188 [ 99.416696] __check_object_size.part.0+0x78/0x168 [ 99.416886] __check_object_size+0x28/0x40 [ 99.417078] listxattr+0x8c/0x120 [ 99.417252] path_listxattr+0x78/0xe0 [ 99.417476] __arm64_sys_listxattr+0x28/0x40 [ 99.417723] invoke_syscall+0x78/0x100 [ 99.417929] el0_svc_common.constprop.0+0x48/0xf0 [ 99.418186] do_el0_svc+0x24/0x38 [ 99.418376] el0_svc+0x3c/0x110 [ 99.418554] el0t_64_sync_handler+0x120/0x130 [ 99.418788] el0t_64_sync+0x194/0x198 [ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000) Issue is reproduced when generic_listxattr() returns 'system.nfs4_acl', thus calling lisxattr() with size = 16 will trigger the bug. Add check on nfs4_listxattr() to return ERANGE error when it is called with size > 0 and the return value is greater than size. |