Total
4174 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-52449 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mtd: Fix gluebi NULL pointer dereference caused by ftl notifier If both ftl.ko and gluebi.ko are loaded, the notifier of ftl triggers NULL pointer dereference when trying to access ‘gluebi->desc’ in gluebi_read(). ubi_gluebi_init ubi_register_volume_notifier ubi_enumerate_volumes ubi_notify_all gluebi_notify nb->notifier_call() gluebi_create mtd_device_register mtd_device_parse_register add_mtd_device blktrans_notify_add not->add() ftl_add_mtd tr->add_mtd() scan_header mtd_read mtd_read_oob mtd_read_oob_std gluebi_read mtd->read() gluebi->desc - NULL Detailed reproduction information available at the Link [1], In the normal case, obtain gluebi->desc in the gluebi_get_device(), and access gluebi->desc in the gluebi_read(). However, gluebi_get_device() is not executed in advance in the ftl_add_mtd() process, which leads to NULL pointer dereference. The solution for the gluebi module is to run jffs2 on the UBI volume without considering working with ftl or mtdblock [2]. Therefore, this problem can be avoided by preventing gluebi from creating the mtdblock device after creating mtd partition of the type MTD_UBIVOLUME. | ||||
CVE-2023-52448 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix kernel NULL pointer dereference in gfs2_rgrp_dump Syzkaller has reported a NULL pointer dereference when accessing rgd->rd_rgl in gfs2_rgrp_dump(). This can happen when creating rgd->rd_gl fails in read_rindex_entry(). Add a NULL pointer check in gfs2_rgrp_dump() to prevent that. | ||||
CVE-2023-52443 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: apparmor: avoid crash when parsed profile name is empty When processing a packed profile in unpack_profile() described like "profile :ns::samba-dcerpcd /usr/lib*/samba/{,samba/}samba-dcerpcd {...}" a string ":samba-dcerpcd" is unpacked as a fully-qualified name and then passed to aa_splitn_fqname(). aa_splitn_fqname() treats ":samba-dcerpcd" as only containing a namespace. Thus it returns NULL for tmpname, meanwhile tmpns is non-NULL. Later aa_alloc_profile() crashes as the new profile name is NULL now. general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 6 PID: 1657 Comm: apparmor_parser Not tainted 6.7.0-rc2-dirty #16 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:strlen+0x1e/0xa0 Call Trace: <TASK> ? strlen+0x1e/0xa0 aa_policy_init+0x1bb/0x230 aa_alloc_profile+0xb1/0x480 unpack_profile+0x3bc/0x4960 aa_unpack+0x309/0x15e0 aa_replace_profiles+0x213/0x33c0 policy_update+0x261/0x370 profile_replace+0x20e/0x2a0 vfs_write+0x2af/0xe00 ksys_write+0x126/0x250 do_syscall_64+0x46/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> ---[ end trace 0000000000000000 ]--- RIP: 0010:strlen+0x1e/0xa0 It seems such behaviour of aa_splitn_fqname() is expected and checked in other places where it is called (e.g. aa_remove_profiles). Well, there is an explicit comment "a ns name without a following profile is allowed" inside. AFAICS, nothing can prevent unpacked "name" to be in form like ":samba-dcerpcd" - it is passed from userspace. Deny the whole profile set replacement in such case and inform user with EPROTO and an explaining message. Found by Linux Verification Center (linuxtesting.org). | ||||
CVE-2025-22015 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: mm/migrate: fix shmem xarray update during migration A shmem folio can be either in page cache or in swap cache, but not at the same time. Namely, once it is in swap cache, folio->mapping should be NULL, and the folio is no longer in a shmem mapping. In __folio_migrate_mapping(), to determine the number of xarray entries to update, folio_test_swapbacked() is used, but that conflates shmem in page cache case and shmem in swap cache case. It leads to xarray multi-index entry corruption, since it turns a sibling entry to a normal entry during xas_store() (see [1] for a userspace reproduction). Fix it by only using folio_test_swapcache() to determine whether xarray is storing swap cache entries or not to choose the right number of xarray entries to update. [1] https://lore.kernel.org/linux-mm/[email protected]/ Note: In __split_huge_page(), folio_test_anon() && folio_test_swapcache() is used to get swap_cache address space, but that ignores the shmem folio in swap cache case. It could lead to NULL pointer dereferencing when a in-swap-cache shmem folio is split at __xa_store(), since !folio_test_anon() is true and folio->mapping is NULL. But fortunately, its caller split_huge_page_to_list_to_order() bails out early with EBUSY when folio->mapping is NULL. So no need to take care of it here. | ||||
CVE-2025-22009 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: regulator: dummy: force synchronous probing Sometimes I get a NULL pointer dereference at boot time in kobject_get() with the following call stack: anatop_regulator_probe() devm_regulator_register() regulator_register() regulator_resolve_supply() kobject_get() By placing some extra BUG_ON() statements I could verify that this is raised because probing of the 'dummy' regulator driver is not completed ('dummy_regulator_rdev' is still NULL). In the JTAG debugger I can see that dummy_regulator_probe() and anatop_regulator_probe() can be run by different kernel threads (kworker/u4:*). I haven't further investigated whether this can be changed or if there are other possibilities to force synchronization between these two probe routines. On the other hand I don't expect much boot time penalty by probing the 'dummy' regulator synchronously. | ||||
CVE-2025-22007 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix error code in chan_alloc_skb_cb() The chan_alloc_skb_cb() function is supposed to return error pointers on error. Returning NULL will lead to a NULL dereference. | ||||
CVE-2025-22006 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: Fix NAPI registration sequence Registering the interrupts for TX or RX DMA Channels prior to registering their respective NAPI callbacks can result in a NULL pointer dereference. This is seen in practice as a random occurrence since it depends on the randomness associated with the generation of traffic by Linux and the reception of traffic from the wire. | ||||
CVE-2025-22002 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfs: Call `invalidate_cache` only if implemented Many filesystems such as NFS and Ceph do not implement the `invalidate_cache` method. On those filesystems, if writing to the cache (`NETFS_WRITE_TO_CACHE`) fails for some reason, the kernel crashes like this: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor instruction fetch in kernel mode #PF: error_code(0x0010) - not-present page PGD 0 P4D 0 Oops: Oops: 0010 [#1] SMP PTI CPU: 9 UID: 0 PID: 3380 Comm: kworker/u193:11 Not tainted 6.13.3-cm4all1-hp #437 Hardware name: HP ProLiant DL380 Gen9/ProLiant DL380 Gen9, BIOS P89 10/17/2018 Workqueue: events_unbound netfs_write_collection_worker RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffff9b86e2ca7dc0 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 7fffffffffffffff RDX: 0000000000000001 RSI: ffff89259d576a18 RDI: ffff89259d576900 RBP: ffff89259d5769b0 R08: ffff9b86e2ca7d28 R09: 0000000000000002 R10: ffff89258ceaca80 R11: 0000000000000001 R12: 0000000000000020 R13: ffff893d158b9338 R14: ffff89259d576900 R15: ffff89259d5769b0 FS: 0000000000000000(0000) GS:ffff893c9fa40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 000000054442e003 CR4: 00000000001706f0 Call Trace: <TASK> ? __die+0x1f/0x60 ? page_fault_oops+0x15c/0x460 ? try_to_wake_up+0x2d2/0x530 ? exc_page_fault+0x5e/0x100 ? asm_exc_page_fault+0x22/0x30 netfs_write_collection_worker+0xe9f/0x12b0 ? xs_poll_check_readable+0x3f/0x80 ? xs_stream_data_receive_workfn+0x8d/0x110 process_one_work+0x134/0x2d0 worker_thread+0x299/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xba/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Modules linked in: CR2: 0000000000000000 This patch adds the missing `NULL` check. | ||||
CVE-2025-21998 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: uefisecapp: fix efivars registration race Since the conversion to using the TZ allocator, the efivars service is registered before the memory pool has been allocated, something which can lead to a NULL-pointer dereference in case of a racing EFI variable access. Make sure that all resources have been set up before registering the efivars. | ||||
CVE-2025-21990 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: NULL-check BO's backing store when determining GFX12 PTE flags PRT BOs may not have any backing store, so bo->tbo.resource will be NULL. Check for that before dereferencing. (cherry picked from commit 3e3fcd29b505cebed659311337ea03b7698767fc) | ||||
CVE-2025-21989 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix missing .is_two_pixels_per_container Starting from 6.11, AMDGPU driver, while being loaded with amdgpu.dc=1, due to lack of .is_two_pixels_per_container function in dce60_tg_funcs, causes a NULL pointer dereference on PCs with old GPUs, such as R9 280X. So this fix adds missing .is_two_pixels_per_container to dce60_tg_funcs. (cherry picked from commit bd4b125eb949785c6f8a53b0494e32795421209d) | ||||
CVE-2025-21982 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: pinctrl: nuvoton: npcm8xx: Add NULL check in npcm8xx_gpio_fw devm_kasprintf() calls can return null pointers on failure. But the return values were not checked in npcm8xx_gpio_fw(). Add NULL check in npcm8xx_gpio_fw(), to handle kernel NULL pointer dereference error. | ||||
CVE-2025-21980 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched: address a potential NULL pointer dereference in the GRED scheduler. If kzalloc in gred_init returns a NULL pointer, the code follows the error handling path, invoking gred_destroy. This, in turn, calls gred_offload, where memset could receive a NULL pointer as input, potentially leading to a kernel crash. When table->opt is NULL in gred_init(), gred_change_table_def() is not called yet, so it is not necessary to call ->ndo_setup_tc() in gred_offload(). | ||||
CVE-2025-21975 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: handle errors in mlx5_chains_create_table() In mlx5_chains_create_table(), the return value of mlx5_get_fdb_sub_ns() and mlx5_get_flow_namespace() must be checked to prevent NULL pointer dereferences. If either function fails, the function should log error message with mlx5_core_warn() and return error pointer. | ||||
CVE-2025-21973 | 2025-05-04 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: fix kernel panic in the bnxt_get_queue_stats{rx | tx} When qstats-get operation is executed, callbacks of netdev_stats_ops are called. The bnxt_get_queue_stats{rx | tx} collect per-queue stats from sw_stats in the rings. But {rx | tx | cp}_ring are allocated when the interface is up. So, these rings are not allocated when the interface is down. The qstats-get is allowed even if the interface is down. However, the bnxt_get_queue_stats{rx | tx}() accesses cp_ring and tx_ring without null check. So, it needs to avoid accessing rings if the interface is down. Reproducer: ip link set $interface down ./cli.py --spec netdev.yaml --dump qstats-get OR ip link set $interface down python ./stats.py Splat looks like: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 1680fa067 P4D 1680fa067 PUD 16be3b067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 0 UID: 0 PID: 1495 Comm: python3 Not tainted 6.14.0-rc4+ #32 5cd0f999d5a15c574ac72b3e4b907341 Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021 RIP: 0010:bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en] Code: c6 87 b5 18 00 00 02 eb a2 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 01 RSP: 0018:ffffabef43cdb7e0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffc04c8710 RCX: 0000000000000000 RDX: ffffabef43cdb858 RSI: 0000000000000000 RDI: ffff8d504e850000 RBP: ffff8d506c9f9c00 R08: 0000000000000004 R09: ffff8d506bcd901c R10: 0000000000000015 R11: ffff8d506bcd9000 R12: 0000000000000000 R13: ffffabef43cdb8c0 R14: ffff8d504e850000 R15: 0000000000000000 FS: 00007f2c5462b080(0000) GS:ffff8d575f600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000167fd0000 CR4: 00000000007506f0 PKRU: 55555554 Call Trace: <TASK> ? __die+0x20/0x70 ? page_fault_oops+0x15a/0x460 ? sched_balance_find_src_group+0x58d/0xd10 ? exc_page_fault+0x6e/0x180 ? asm_exc_page_fault+0x22/0x30 ? bnxt_get_queue_stats_rx+0xf/0x70 [bnxt_en cdd546fd48563c280cfd30e9647efa420db07bf1] netdev_nl_stats_by_netdev+0x2b1/0x4e0 ? xas_load+0x9/0xb0 ? xas_find+0x183/0x1d0 ? xa_find+0x8b/0xe0 netdev_nl_qstats_get_dumpit+0xbf/0x1e0 genl_dumpit+0x31/0x90 netlink_dump+0x1a8/0x360 | ||||
CVE-2025-21970 | 2025-05-04 | 4.0 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Bridge, fix the crash caused by LAG state check When removing LAG device from bridge, NETDEV_CHANGEUPPER event is triggered. Driver finds the lower devices (PFs) to flush all the offloaded entries. And mlx5_lag_is_shared_fdb is checked, it returns false if one of PF is unloaded. In such case, mlx5_esw_bridge_lag_rep_get() and its caller return NULL, instead of the alive PF, and the flush is skipped. Besides, the bridge fdb entry's lastuse is updated in mlx5 bridge event handler. But this SWITCHDEV_FDB_ADD_TO_BRIDGE event can be ignored in this case because the upper interface for bond is deleted, and the entry will never be aged because lastuse is never updated. To make things worse, as the entry is alive, mlx5 bridge workqueue keeps sending that event, which is then handled by kernel bridge notifier. It causes the following crash when accessing the passed bond netdev which is already destroyed. To fix this issue, remove such checks. LAG state is already checked in commit 15f8f168952f ("net/mlx5: Bridge, verify LAG state when adding bond to bridge"), driver still need to skip offload if LAG becomes invalid state after initialization. Oops: stack segment: 0000 [#1] SMP CPU: 3 UID: 0 PID: 23695 Comm: kworker/u40:3 Tainted: G OE 6.11.0_mlnx #1 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_bridge_wq mlx5_esw_bridge_update_work [mlx5_core] RIP: 0010:br_switchdev_event+0x2c/0x110 [bridge] Code: 44 00 00 48 8b 02 48 f7 00 00 02 00 00 74 69 41 54 55 53 48 83 ec 08 48 8b a8 08 01 00 00 48 85 ed 74 4a 48 83 fe 02 48 89 d3 <4c> 8b 65 00 74 23 76 49 48 83 fe 05 74 7e 48 83 fe 06 75 2f 0f b7 RSP: 0018:ffffc900092cfda0 EFLAGS: 00010297 RAX: ffff888123bfe000 RBX: ffffc900092cfe08 RCX: 00000000ffffffff RDX: ffffc900092cfe08 RSI: 0000000000000001 RDI: ffffffffa0c585f0 RBP: 6669746f6e690a30 R08: 0000000000000000 R09: ffff888123ae92c8 R10: 0000000000000000 R11: fefefefefefefeff R12: ffff888123ae9c60 R13: 0000000000000001 R14: ffffc900092cfe08 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88852c980000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f15914c8734 CR3: 0000000002830005 CR4: 0000000000770ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __die_body+0x1a/0x60 ? die+0x38/0x60 ? do_trap+0x10b/0x120 ? do_error_trap+0x64/0xa0 ? exc_stack_segment+0x33/0x50 ? asm_exc_stack_segment+0x22/0x30 ? br_switchdev_event+0x2c/0x110 [bridge] ? sched_balance_newidle.isra.149+0x248/0x390 notifier_call_chain+0x4b/0xa0 atomic_notifier_call_chain+0x16/0x20 mlx5_esw_bridge_update+0xec/0x170 [mlx5_core] mlx5_esw_bridge_update_work+0x19/0x40 [mlx5_core] process_scheduled_works+0x81/0x390 worker_thread+0x106/0x250 ? bh_worker+0x110/0x110 kthread+0xb7/0xe0 ? kthread_park+0x80/0x80 ret_from_fork+0x2d/0x50 ? kthread_park+0x80/0x80 ret_from_fork_asm+0x11/0x20 </TASK> | ||||
CVE-2025-21957 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: qla1280: Fix kernel oops when debug level > 2 A null dereference or oops exception will eventually occur when qla1280.c driver is compiled with DEBUG_QLA1280 enabled and ql_debug_level > 2. I think its clear from the code that the intention here is sg_dma_len(s) not length of sg_next(s) when printing the debug info. | ||||
CVE-2025-21953 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: mana: cleanup mana struct after debugfs_remove() When on a MANA VM hibernation is triggered, as part of hibernate_snapshot(), mana_gd_suspend() and mana_gd_resume() are called. If during this mana_gd_resume(), a failure occurs with HWC creation, mana_port_debugfs pointer does not get reinitialized and ends up pointing to older, cleaned-up dentry. Further in the hibernation path, as part of power_down(), mana_gd_shutdown() is triggered. This call, unaware of the failures in resume, tries to cleanup the already cleaned up mana_port_debugfs value and hits the following bug: [ 191.359296] mana 7870:00:00.0: Shutdown was called [ 191.359918] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ 191.360584] #PF: supervisor write access in kernel mode [ 191.361125] #PF: error_code(0x0002) - not-present page [ 191.361727] PGD 1080ea067 P4D 0 [ 191.362172] Oops: Oops: 0002 [#1] SMP NOPTI [ 191.362606] CPU: 11 UID: 0 PID: 1674 Comm: bash Not tainted 6.14.0-rc5+ #2 [ 191.363292] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 11/21/2024 [ 191.364124] RIP: 0010:down_write+0x19/0x50 [ 191.364537] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 55 48 89 e5 53 48 89 fb e8 de cd ff ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 16 65 48 8b 05 88 24 4c 6a 48 89 43 08 48 8b 5d [ 191.365867] RSP: 0000:ff45fbe0c1c037b8 EFLAGS: 00010246 [ 191.366350] RAX: 0000000000000000 RBX: 0000000000000098 RCX: ffffff8100000000 [ 191.366951] RDX: 0000000000000001 RSI: 0000000000000064 RDI: 0000000000000098 [ 191.367600] RBP: ff45fbe0c1c037c0 R08: 0000000000000000 R09: 0000000000000001 [ 191.368225] R10: ff45fbe0d2b01000 R11: 0000000000000008 R12: 0000000000000000 [ 191.368874] R13: 000000000000000b R14: ff43dc27509d67c0 R15: 0000000000000020 [ 191.369549] FS: 00007dbc5001e740(0000) GS:ff43dc663f380000(0000) knlGS:0000000000000000 [ 191.370213] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 191.370830] CR2: 0000000000000098 CR3: 0000000168e8e002 CR4: 0000000000b73ef0 [ 191.371557] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 191.372192] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 191.372906] Call Trace: [ 191.373262] <TASK> [ 191.373621] ? show_regs+0x64/0x70 [ 191.374040] ? __die+0x24/0x70 [ 191.374468] ? page_fault_oops+0x290/0x5b0 [ 191.374875] ? do_user_addr_fault+0x448/0x800 [ 191.375357] ? exc_page_fault+0x7a/0x160 [ 191.375971] ? asm_exc_page_fault+0x27/0x30 [ 191.376416] ? down_write+0x19/0x50 [ 191.376832] ? down_write+0x12/0x50 [ 191.377232] simple_recursive_removal+0x4a/0x2a0 [ 191.377679] ? __pfx_remove_one+0x10/0x10 [ 191.378088] debugfs_remove+0x44/0x70 [ 191.378530] mana_detach+0x17c/0x4f0 [ 191.378950] ? __flush_work+0x1e2/0x3b0 [ 191.379362] ? __cond_resched+0x1a/0x50 [ 191.379787] mana_remove+0xf2/0x1a0 [ 191.380193] mana_gd_shutdown+0x3b/0x70 [ 191.380642] pci_device_shutdown+0x3a/0x80 [ 191.381063] device_shutdown+0x13e/0x230 [ 191.381480] kernel_power_off+0x35/0x80 [ 191.381890] hibernate+0x3c6/0x470 [ 191.382312] state_store+0xcb/0xd0 [ 191.382734] kobj_attr_store+0x12/0x30 [ 191.383211] sysfs_kf_write+0x3e/0x50 [ 191.383640] kernfs_fop_write_iter+0x140/0x1d0 [ 191.384106] vfs_write+0x271/0x440 [ 191.384521] ksys_write+0x72/0xf0 [ 191.384924] __x64_sys_write+0x19/0x20 [ 191.385313] x64_sys_call+0x2b0/0x20b0 [ 191.385736] do_syscall_64+0x79/0x150 [ 191.386146] ? __mod_memcg_lruvec_state+0xe7/0x240 [ 191.386676] ? __lruvec_stat_mod_folio+0x79/0xb0 [ 191.387124] ? __pfx_lru_add+0x10/0x10 [ 191.387515] ? queued_spin_unlock+0x9/0x10 [ 191.387937] ? do_anonymous_page+0x33c/0xa00 [ 191.388374] ? __handle_mm_fault+0xcf3/0x1210 [ 191.388805] ? __count_memcg_events+0xbe/0x180 [ 191.389235] ? handle_mm_fault+0xae/0x300 [ 19 ---truncated--- | ||||
CVE-2025-21948 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: appleir: Fix potential NULL dereference at raw event handle Syzkaller reports a NULL pointer dereference issue in input_event(). BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline] BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline] BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395 Read of size 8 at addr 0000000000000028 by task syz-executor199/2949 CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 kasan_report+0xd9/0x110 mm/kasan/report.c:602 check_region_inline mm/kasan/generic.c:183 [inline] kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189 instrument_atomic_read include/linux/instrumented.h:68 [inline] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] is_event_supported drivers/input/input.c:67 [inline] input_event+0x42/0xa0 drivers/input/input.c:395 input_report_key include/linux/input.h:439 [inline] key_down drivers/hid/hid-appleir.c:159 [inline] appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232 __hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111 hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484 __usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650 usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734 dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993 __run_hrtimer kernel/time/hrtimer.c:1739 [inline] __hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803 hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820 handle_softirqs+0x206/0x8d0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702 __mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185 add_timer+0x62/0x90 kernel/time/timer.c:1295 schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98 usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645 usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784 hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl fs/ioctl.c:892 [inline] __x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f </TASK> This happens due to the malformed report items sent by the emulated device which results in a report, that has no fields, being added to the report list. Due to this appleir_input_configured() is never called, hidinput_connect() fails which results in the HID_CLAIMED_INPUT flag is not being set. However, it does not make appleir_probe() fail and lets the event callback to be called without the associated input device. Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook early if the driver didn't claim any input_dev for some reason. Moreover, some other hid drivers accessing input_dev in their event callbacks do have similar checks, too. Found by Linux Verification Center (linuxtesting.org) with Syzkaller. | ||||
CVE-2025-21941 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix null check for pipe_ctx->plane_state in resource_build_scaling_params Null pointer dereference issue could occur when pipe_ctx->plane_state is null. The fix adds a check to ensure 'pipe_ctx->plane_state' is not null before accessing. This prevents a null pointer dereference. Found by code review. (cherry picked from commit 63e6a77ccf239337baa9b1e7787cde9fa0462092) |