Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15621 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-53823 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: block/rq_qos: protect rq_qos apis with a new lock commit 50e34d78815e ("block: disable the elevator int del_gendisk") move rq_qos_exit() from disk_release() to del_gendisk(), this will introduce some problems: 1) If rq_qos_add() is triggered by enabling iocost/iolatency through cgroupfs, then it can concurrent with del_gendisk(), it's not safe to write 'q->rq_qos' concurrently. 2) Activate cgroup policy that is relied on rq_qos will call rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is called in the middle, null-ptr-dereference will be triggered in blkcg_activate_policy(). 3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the disk, then if rq_qos_exit() from del_gendisk() is done before rq_qos_add(), then memory will be leaked. This patch add a new disk level mutex 'rq_qos_mutex': 1) The lock will protect rq_qos_exit() directly. 2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be called from disk initialization for now because wbt can't be destructed until rq_qos_exit(), so it's safe not to protect wbt for now. Hoever, in case that rq_qos dynamically destruction is supported in the furture, this patch also protect rq_qos_add() from wbt_init() directly, this is enough because blk-sysfs already synchronize writers with disk removal. 3) For iocost and iolatency, in order to synchronize disk removal and cgroup configuration, the lock is held after blkdev_get_no_open() from blkg_conf_open_bdev(), and is released in blkg_conf_exit(). In order to fix the above memory leak, disk_live() is checked after holding the new lock.
CVE-2023-53822 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Ignore frags from uninitialized peer in dp. When max virtual ap interfaces are configured in all the bands with ACS and hostapd restart is done every 60s, a crash is observed at random times. In this certain scenario, a fragmented packet is received for self peer, for which rx_tid and rx_frags are not initialized in datapath. While handling this fragment, crash is observed as the rx_frag list is uninitialised and when we walk in ath11k_dp_rx_h_sort_frags, skb null leads to exception. To address this, before processing received fragments we check dp_setup_done flag is set to ensure that peer has completed its dp peer setup for fragment queue, else ignore processing the fragments. Call trace: ath11k_dp_process_rx_err+0x550/0x1084 [ath11k] ath11k_dp_service_srng+0x70/0x370 [ath11k] 0xffffffc009693a04 __napi_poll+0x30/0xa4 net_rx_action+0x118/0x270 __do_softirq+0x10c/0x244 irq_exit+0x64/0xb4 __handle_domain_irq+0x88/0xac gic_handle_irq+0x74/0xbc el1_irq+0xf0/0x1c0 arch_cpu_idle+0x10/0x18 do_idle+0x104/0x248 cpu_startup_entry+0x20/0x64 rest_init+0xd0/0xdc arch_call_rest_init+0xc/0x14 start_kernel+0x480/0x4b8 Code: f9400281 f94066a2 91405021 b94a0023 (f9406401) Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1
CVE-2023-53821 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: ip6_vti: fix slab-use-after-free in decode_session6 When ipv6_vti device is set to the qdisc of the sfb type, the cb field of the sent skb may be modified during enqueuing. Then, slab-use-after-free may occur when ipv6_vti device sends IPv6 packets. The stack information is as follows: BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890 Read of size 1 at addr ffff88802e08edc2 by task swapper/0/0 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0-next-20230707-00001-g84e2cad7f979 #410 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0xd9/0x150 print_address_description.constprop.0+0x2c/0x3c0 kasan_report+0x11d/0x130 decode_session6+0x103f/0x1890 __xfrm_decode_session+0x54/0xb0 vti6_tnl_xmit+0x3e6/0x1ee0 dev_hard_start_xmit+0x187/0x700 sch_direct_xmit+0x1a3/0xc30 __qdisc_run+0x510/0x17a0 __dev_queue_xmit+0x2215/0x3b10 neigh_connected_output+0x3c2/0x550 ip6_finish_output2+0x55a/0x1550 ip6_finish_output+0x6b9/0x1270 ip6_output+0x1f1/0x540 ndisc_send_skb+0xa63/0x1890 ndisc_send_rs+0x132/0x6f0 addrconf_rs_timer+0x3f1/0x870 call_timer_fn+0x1a0/0x580 expire_timers+0x29b/0x4b0 run_timer_softirq+0x326/0x910 __do_softirq+0x1d4/0x905 irq_exit_rcu+0xb7/0x120 sysvec_apic_timer_interrupt+0x97/0xc0 </IRQ> Allocated by task 9176: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 __kasan_slab_alloc+0x7f/0x90 kmem_cache_alloc_node+0x1cd/0x410 kmalloc_reserve+0x165/0x270 __alloc_skb+0x129/0x330 netlink_sendmsg+0x9b1/0xe30 sock_sendmsg+0xde/0x190 ____sys_sendmsg+0x739/0x920 ___sys_sendmsg+0x110/0x1b0 __sys_sendmsg+0xf7/0x1c0 do_syscall_64+0x39/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 9176: kasan_save_stack+0x22/0x40 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x40 ____kasan_slab_free+0x160/0x1c0 slab_free_freelist_hook+0x11b/0x220 kmem_cache_free+0xf0/0x490 skb_free_head+0x17f/0x1b0 skb_release_data+0x59c/0x850 consume_skb+0xd2/0x170 netlink_unicast+0x54f/0x7f0 netlink_sendmsg+0x926/0xe30 sock_sendmsg+0xde/0x190 ____sys_sendmsg+0x739/0x920 ___sys_sendmsg+0x110/0x1b0 __sys_sendmsg+0xf7/0x1c0 do_syscall_64+0x39/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd The buggy address belongs to the object at ffff88802e08ed00 which belongs to the cache skbuff_small_head of size 640 The buggy address is located 194 bytes inside of freed 640-byte region [ffff88802e08ed00, ffff88802e08ef80) As commit f855691975bb ("xfrm6: Fix the nexthdr offset in _decode_session6.") showed, xfrm_decode_session was originally intended only for the receive path. IP6CB(skb)->nhoff is not set during transmission. Therefore, set the cb field in the skb to 0 before sending packets.
CVE-2022-50679 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix DMA mappings leak During reallocation of RX buffers, new DMA mappings are created for those buffers. steps for reproduction: while : do for ((i=0; i<=8160; i=i+32)) do ethtool -G enp130s0f0 rx $i tx $i sleep 0.5 ethtool -g enp130s0f0 done done This resulted in crash: i40e 0000:01:00.1: Unable to allocate memory for the Rx descriptor ring, size=65536 Driver BUG WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:141 xdp_rxq_info_unreg+0x43/0x50 Call Trace: i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b Missing register, driver bug WARNING: CPU: 0 PID: 4300 at net/core/xdp.c:119 xdp_rxq_info_unreg_mem_model+0x69/0x140 Call Trace: xdp_rxq_info_unreg+0x1e/0x50 i40e_free_rx_resources+0x70/0x80 [i40e] i40e_set_ringparam+0x27c/0x800 [i40e] ethnl_set_rings+0x1b2/0x290 genl_family_rcv_msg_doit.isra.15+0x10f/0x150 genl_family_rcv_msg+0xb3/0x160 ? rings_fill_reply+0x1a0/0x1a0 genl_rcv_msg+0x47/0x90 ? genl_family_rcv_msg+0x160/0x160 netlink_rcv_skb+0x4c/0x120 genl_rcv+0x24/0x40 netlink_unicast+0x196/0x230 netlink_sendmsg+0x204/0x3d0 sock_sendmsg+0x4c/0x50 __sys_sendto+0xee/0x160 ? handle_mm_fault+0xbe/0x1e0 ? syscall_trace_enter+0x1d3/0x2c0 __x64_sys_sendto+0x24/0x30 do_syscall_64+0x5b/0x1a0 entry_SYSCALL_64_after_hwframe+0x65/0xca RIP: 0033:0x7f5eac8b035b This was caused because of new buffers with different RX ring count should substitute older ones, but those buffers were freed in i40e_configure_rx_ring and reallocated again with i40e_alloc_rx_bi, thus kfree on rx_bi caused leak of already mapped DMA. Fix this by reallocating ZC with rx_bi_zc struct when BPF program loads. Additionally reallocate back to rx_bi when BPF program unloads. If BPF program is loaded/unloaded and XSK pools are created, reallocate RX queues accordingly in XSP_SETUP_XSK_POOL handler.
CVE-2022-50678 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix invalid address access when enabling SCAN log level The variable i is changed when setting random MAC address and causes invalid address access when printing the value of pi->reqs[i]->reqid. We replace reqs index with ri to fix the issue. [ 136.726473] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000 [ 136.737365] Mem abort info: [ 136.740172] ESR = 0x96000004 [ 136.743359] Exception class = DABT (current EL), IL = 32 bits [ 136.749294] SET = 0, FnV = 0 [ 136.752481] EA = 0, S1PTW = 0 [ 136.755635] Data abort info: [ 136.758514] ISV = 0, ISS = 0x00000004 [ 136.762487] CM = 0, WnR = 0 [ 136.765522] user pgtable: 4k pages, 48-bit VAs, pgdp = 000000005c4e2577 [ 136.772265] [0000000000000000] pgd=0000000000000000 [ 136.777160] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 136.782732] Modules linked in: brcmfmac(O) brcmutil(O) cfg80211(O) compat(O) [ 136.789788] Process wificond (pid: 3175, stack limit = 0x00000000053048fb) [ 136.796664] CPU: 3 PID: 3175 Comm: wificond Tainted: G O 4.19.42-00001-g531a5f5 #1 [ 136.805532] Hardware name: Freescale i.MX8MQ EVK (DT) [ 136.810584] pstate: 60400005 (nZCv daif +PAN -UAO) [ 136.815429] pc : brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.821811] lr : brcmf_pno_config_sched_scans+0x67c/0xa80 [brcmfmac] [ 136.828162] sp : ffff00000e9a3880 [ 136.831475] x29: ffff00000e9a3890 x28: ffff800020543400 [ 136.836786] x27: ffff8000b1008880 x26: ffff0000012bf6a0 [ 136.842098] x25: ffff80002054345c x24: ffff800088d22400 [ 136.847409] x23: ffff0000012bf638 x22: ffff0000012bf6d8 [ 136.852721] x21: ffff8000aced8fc0 x20: ffff8000ac164400 [ 136.858032] x19: ffff00000e9a3946 x18: 0000000000000000 [ 136.863343] x17: 0000000000000000 x16: 0000000000000000 [ 136.868655] x15: ffff0000093f3b37 x14: 0000000000000050 [ 136.873966] x13: 0000000000003135 x12: 0000000000000000 [ 136.879277] x11: 0000000000000000 x10: ffff000009a61888 [ 136.884589] x9 : 000000000000000f x8 : 0000000000000008 [ 136.889900] x7 : 303a32303d726464 x6 : ffff00000a1f957d [ 136.895211] x5 : 0000000000000000 x4 : ffff00000e9a3942 [ 136.900523] x3 : 0000000000000000 x2 : ffff0000012cead8 [ 136.905834] x1 : ffff0000012bf6d8 x0 : 0000000000000000 [ 136.911146] Call trace: [ 136.913623] brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac] [ 136.919658] brcmf_pno_start_sched_scan+0xa4/0x118 [brcmfmac] [ 136.925430] brcmf_cfg80211_sched_scan_start+0x80/0xe0 [brcmfmac] [ 136.931636] nl80211_start_sched_scan+0x140/0x308 [cfg80211] [ 136.937298] genl_rcv_msg+0x358/0x3f4 [ 136.940960] netlink_rcv_skb+0xb4/0x118 [ 136.944795] genl_rcv+0x34/0x48 [ 136.947935] netlink_unicast+0x264/0x300 [ 136.951856] netlink_sendmsg+0x2e4/0x33c [ 136.955781] __sys_sendto+0x120/0x19c
CVE-2022-50677 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: ipmi: fix use after free in _ipmi_destroy_user() The intf_free() function frees the "intf" pointer so we cannot dereference it again on the next line.
CVE-2022-50676 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks() syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section protected by lock_sock() without realizing that rds_send_xmit() might call lock_sock(). We don't need to protect cancel_delayed_work_sync() using lock_sock(), for even if rds_{send,recv}_worker() re-queued this work while __flush_work() from cancel_delayed_work_sync() was waiting for this work to complete, retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP bit.
CVE-2022-50675 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: arm64: mte: Avoid setting PG_mte_tagged if no tags cleared or restored Prior to commit 69e3b846d8a7 ("arm64: mte: Sync tags for pages where PTE is untagged"), mte_sync_tags() was only called for pte_tagged() entries (those mapped with PROT_MTE). Therefore mte_sync_tags() could safely use test_and_set_bit(PG_mte_tagged, &page->flags) without inadvertently setting PG_mte_tagged on an untagged page. The above commit was required as guests may enable MTE without any control at the stage 2 mapping, nor a PROT_MTE mapping in the VMM. However, the side-effect was that any page with a PTE that looked like swap (or migration) was getting PG_mte_tagged set automatically. A subsequent page copy (e.g. migration) copied the tags to the destination page even if the tags were owned by KASAN. This issue was masked by the page_kasan_tag_reset() call introduced in commit e5b8d9218951 ("arm64: mte: reset the page tag in page->flags"). When this commit was reverted (20794545c146), KASAN started reporting access faults because the overriding tags in a page did not match the original page->flags (with CONFIG_KASAN_HW_TAGS=y): BUG: KASAN: invalid-access in copy_page+0x10/0xd0 arch/arm64/lib/copy_page.S:26 Read at addr f5ff000017f2e000 by task syz-executor.1/2218 Pointer tag: [f5], memory tag: [f2] Move the PG_mte_tagged bit setting from mte_sync_tags() to the actual place where tags are cleared (mte_sync_page_tags()) or restored (mte_restore_tags()).
CVE-2022-50674 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: riscv: vdso: fix NULL deference in vdso_join_timens() when vfork Testing tools/testing/selftests/timens/vfork_exec.c got below kernel log: [ 6.838454] Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000000020 [ 6.842255] Oops [#1] [ 6.842871] Modules linked in: [ 6.844249] CPU: 1 PID: 64 Comm: vfork_exec Not tainted 6.0.0-rc3-rt15+ #8 [ 6.845861] Hardware name: riscv-virtio,qemu (DT) [ 6.848009] epc : vdso_join_timens+0xd2/0x110 [ 6.850097] ra : vdso_join_timens+0xd2/0x110 [ 6.851164] epc : ffffffff8000635c ra : ffffffff8000635c sp : ff6000000181fbf0 [ 6.852562] gp : ffffffff80cff648 tp : ff60000000fdb700 t0 : 3030303030303030 [ 6.853852] t1 : 0000000000000030 t2 : 3030303030303030 s0 : ff6000000181fc40 [ 6.854984] s1 : ff60000001e6c000 a0 : 0000000000000010 a1 : ffffffff8005654c [ 6.856221] a2 : 00000000ffffefff a3 : 0000000000000000 a4 : 0000000000000000 [ 6.858114] a5 : 0000000000000000 a6 : 0000000000000008 a7 : 0000000000000038 [ 6.859484] s2 : ff60000001e6c068 s3 : ff6000000108abb0 s4 : 0000000000000000 [ 6.860751] s5 : 0000000000001000 s6 : ffffffff8089dc40 s7 : ffffffff8089dc38 [ 6.862029] s8 : ffffffff8089dc30 s9 : ff60000000fdbe38 s10: 000000000000005e [ 6.863304] s11: ffffffff80cc3510 t3 : ffffffff80d1112f t4 : ffffffff80d1112f [ 6.864565] t5 : ffffffff80d11130 t6 : ff6000000181fa00 [ 6.865561] status: 0000000000000120 badaddr: 0000000000000020 cause: 000000000000000d [ 6.868046] [<ffffffff8008dc94>] timens_commit+0x38/0x11a [ 6.869089] [<ffffffff8008dde8>] timens_on_fork+0x72/0xb4 [ 6.870055] [<ffffffff80190096>] begin_new_exec+0x3c6/0x9f0 [ 6.871231] [<ffffffff801d826c>] load_elf_binary+0x628/0x1214 [ 6.872304] [<ffffffff8018ee7a>] bprm_execve+0x1f2/0x4e4 [ 6.873243] [<ffffffff8018f90c>] do_execveat_common+0x16e/0x1ee [ 6.874258] [<ffffffff8018f9c8>] sys_execve+0x3c/0x48 [ 6.875162] [<ffffffff80003556>] ret_from_syscall+0x0/0x2 [ 6.877484] ---[ end trace 0000000000000000 ]--- This is because the mm->context.vdso_info is NULL in vfork case. From another side, mm->context.vdso_info either points to vdso info for RV64 or vdso info for compat, there's no need to bloat riscv's mm_context_t, we can handle the difference when setup the additional page for vdso.
CVE-2022-50673 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: ext4: fix use-after-free in ext4_orphan_cleanup I caught a issue as follows: ================================================================== BUG: KASAN: use-after-free in __list_add_valid+0x28/0x1a0 Read of size 8 at addr ffff88814b13f378 by task mount/710 CPU: 1 PID: 710 Comm: mount Not tainted 6.1.0-rc3-next #370 Call Trace: <TASK> dump_stack_lvl+0x73/0x9f print_report+0x25d/0x759 kasan_report+0xc0/0x120 __asan_load8+0x99/0x140 __list_add_valid+0x28/0x1a0 ext4_orphan_cleanup+0x564/0x9d0 [ext4] __ext4_fill_super+0x48e2/0x5300 [ext4] ext4_fill_super+0x19f/0x3a0 [ext4] get_tree_bdev+0x27b/0x450 ext4_get_tree+0x19/0x30 [ext4] vfs_get_tree+0x49/0x150 path_mount+0xaae/0x1350 do_mount+0xe2/0x110 __x64_sys_mount+0xf0/0x190 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> [...] ================================================================== Above issue may happen as follows: ------------------------------------- ext4_fill_super ext4_orphan_cleanup --- loop1: assume last_orphan is 12 --- list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan) ext4_truncate --> return 0 ext4_inode_attach_jinode --> return -ENOMEM iput(inode) --> free inode<12> --- loop2: last_orphan is still 12 --- list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); // use inode<12> and trigger UAF To solve this issue, we need to propagate the return value of ext4_inode_attach_jinode() appropriately.
CVE-2022-50672 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: mailbox: zynq-ipi: fix error handling while device_register() fails If device_register() fails, it has two issues: 1. The name allocated by dev_set_name() is leaked. 2. The parent of device is not NULL, device_unregister() is called in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because of removing not added device. Call put_device() to give up the reference, so the name is freed in kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes() to avoid null-ptr-deref.
CVE-2022-50671 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix "kernel NULL pointer dereference" error When rxe_queue_init in the function rxe_qp_init_req fails, both qp->req.task.func and qp->req.task.arg are not initialized. Because of creation of qp fails, the function rxe_create_qp will call rxe_qp_do_cleanup to handle allocated resource. Before calling __rxe_do_task, both qp->req.task.func and qp->req.task.arg should be checked.
CVE-2022-50670 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: mmc: omap_hsmmc: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). Fix this by checking the return value and goto error path wihch will call mmc_free_host().
CVE-2022-50669 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible name leak in ocxl_file_register_afu() If device_register() returns error in ocxl_file_register_afu(), the name allocated by dev_set_name() need be freed. As comment of device_register() says, it should use put_device() to give up the reference in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanup(), and info is freed in info_release().
CVE-2022-50668 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: ext4: fix deadlock due to mbcache entry corruption When manipulating xattr blocks, we can deadlock infinitely looping inside ext4_xattr_block_set() where we constantly keep finding xattr block for reuse in mbcache but we are unable to reuse it because its reference count is too big. This happens because cache entry for the xattr block is marked as reusable (e_reusable set) although its reference count is too big. When this inconsistency happens, this inconsistent state is kept indefinitely and so ext4_xattr_block_set() keeps retrying indefinitely. The inconsistent state is caused by non-atomic update of e_reusable bit. e_reusable is part of a bitfield and e_reusable update can race with update of e_referenced bit in the same bitfield resulting in loss of one of the updates. Fix the problem by using atomic bitops instead. This bug has been around for many years, but it became *much* easier to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr blocks").
CVE-2022-50667 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Fix memory leak in vmw_mksstat_add_ioctl() If the copy of the description string from userspace fails, then the page for the instance descriptor doesn't get freed before returning -EFAULT, which leads to a memleak.
CVE-2022-50666 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Fix QP destroy to wait for all references dropped. Delay QP destroy completion until all siw references to QP are dropped. The calling RDMA core will free QP structure after successful return from siw_qp_destroy() call, so siw must not hold any remaining reference to the QP upon return. A use-after-free was encountered in xfstest generic/460, while testing NFSoRDMA. Here, after a TCP connection drop by peer, the triggered siw_cm_work_handler got delayed until after QP destroy call, referencing a QP which has already freed.
CVE-2022-50665 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(), as below, it will not print when debug_mask is not set ATH11K_DBG_DATA. ath11k_dbg(ab, ATH11K_DBG_DATA, "failed to find the peer with peer_id %d\n", ppdu_info.peer_id); When run scan with station disconnected, the peer_id is 0 for case HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is reset to 0 in the while loop, so it does not match condition of the check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and then the log "failed to find the peer with peer_id 0" print after the check in the loop, it is below call stack when debug_mask is set ATH11K_DBG_DATA. The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv") add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in ath11k_dp_rx_process_mon_status(), but the commit does not initialize the peer_id to HAL_INVALID_PEERID, then lead the check mis-match. Callstack of the failed log: [12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k] [12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd [12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246 [12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000 [12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18 [12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000 [12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40 [12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000 [12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000 [12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0 [12335.689360] Call Trace: [12335.689377] <IRQ> [12335.689418] ? rcu_read_lock_held_common+0x12/0x50 [12335.689447] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689471] ? rcu_read_lock_held_common+0x12/0x50 [12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k] [12335.689653] ? lock_acquire+0xef/0x360 [12335.689681] ? rcu_read_lock_sched_held+0x25/0x80 [12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k] [12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689860] call_timer_fn+0xb2/0x2f0 [12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k] [12335.689970] run_timer_softirq+0x21f/0x540 [12335.689999] ? ktime_get+0xad/0x160 [12335.690025] ? lapic_next_deadline+0x2c/0x40 [12335.690053] ? clockevents_program_event+0x82/0x100 [12335.690093] __do_softirq+0x151/0x4a8 [12335.690135] irq_exit_rcu+0xc9/0x100 [12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0 [12335.690189] </IRQ> [12335.690204] <TASK> [12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20 Reset the default value to HAL_INVALID_PEERID each time after memset of ppdu_info as well as others memset which existed in function ath11k_dp_rx_process_mon_status(), then the failed log disappeared. Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3
CVE-2022-50664 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: fix leak of memory fw
CVE-2022-50663 1 Linux 1 Linux Kernel 2025-12-09 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix possible memory leak in stmmac_dvr_probe() The bitmap_free() should be called to free priv->af_xdp_zc_qps when create_singlethread_workqueue() fails, otherwise there will be a memory leak, so we add the err path error_wq_init to fix it.