Total
91 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-1538 | 1 Answer | 1 Answer | 2025-02-27 | 5.3 Medium |
Observable Timing Discrepancy in GitHub repository answerdev/answer prior to 1.0.6. | ||||
CVE-2023-45287 | 2 Golang, Redhat | 11 Go, Enterprise Linux, Migration Toolkit Applications and 8 more | 2025-02-13 | 7.5 High |
Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits. In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels. | ||||
CVE-2023-25000 | 2 Hashicorp, Redhat | 3 Vault, Openshift, Openshift Data Foundation | 2025-02-13 | 5 Medium |
HashiCorp Vault's implementation of Shamir's secret sharing used precomputed table lookups, and was vulnerable to cache-timing attacks. An attacker with access to, and the ability to observe a large number of unseal operations on the host through a side channel may reduce the search space of a brute force effort to recover the Shamir shares. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9. | ||||
CVE-2020-1926 | 1 Apache | 1 Hive | 2025-02-13 | 5.9 Medium |
Apache Hive cookie signature verification used a non constant time comparison which is known to be vulnerable to timing attacks. This could allow recovery of another users cookie signature. The issue was addressed in Apache Hive 2.3.8 | ||||
CVE-2019-16782 | 4 Fedoraproject, Opensuse, Rack and 1 more | 6 Fedora, Leap, Rack and 3 more | 2025-02-13 | 6.3 Medium |
There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison. | ||||
CVE-2024-42512 | 2025-02-11 | 8.6 High | ||
Vulnerability in the OPC UA .NET Standard Stack before 1.5.374.158 allows an unauthorized attacker to bypass application authentication when the deprecated Basic128Rsa15 security policy is enabled. | ||||
CVE-2023-50781 | 2 M2crypto Project, Redhat | 5 M2crypto, Enterprise Linux, Rhev Hypervisor and 2 more | 2025-02-07 | 7.5 High |
A flaw was found in m2crypto. This issue may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. | ||||
CVE-2020-35165 | 1 Dell | 2 Bsafe Crypto-c-micro-edition, Bsafe Micro-edition-suite | 2025-02-06 | 5.1 Medium |
Dell BSAFE Crypto-C Micro Edition, versions before 4.1.5, and Dell BSAFE Micro Edition Suite, versions before 4.6, contain an Observable Timing Discrepancy Vulnerability. | ||||
CVE-2021-34337 | 1 Gnu | 1 Mailman | 2025-02-06 | 6.3 Medium |
An issue was discovered in Mailman Core before 3.3.5. An attacker with access to the REST API could use timing attacks to determine the value of the configured REST API password and then make arbitrary REST API calls. The REST API is bound to localhost by default, limiting the ability for attackers to exploit this, but can optionally be made to listen on other interfaces. | ||||
CVE-2025-0693 | 2025-01-24 | 5.3 Medium | ||
Variable response times in the AWS Sign-in IAM user login flow allowed for the use of brute force enumeration techniques to identify valid IAM usernames in an arbitrary AWS account. | ||||
CVE-2023-32694 | 1 Saleor | 1 Saleor | 2025-01-16 | 4.8 Medium |
Saleor Core is a composable, headless commerce API. Saleor's `validate_hmac_signature` function is vulnerable to timing attacks. Malicious users could abuse this vulnerability on Saleor deployments having the Adyen plugin enabled in order to determine the secret key and forge fake events, this could affect the database integrity such as marking an order as paid when it is not. This issue has been patched in versions 3.7.68, 3.8.40, 3.9.49, 3.10.36, 3.11.35, 3.12.25, and 3.13.16. | ||||
CVE-2024-52307 | 1 Goauthentik | 1 Authentik | 2024-11-27 | N/A |
authentik is an open-source identity provider. Due to the usage of a non-constant time comparison for the /-/metrics/ endpoint it was possible to brute-force the SECRET_KEY, which is used to authenticate the endpoint. The /-/metrics/ endpoint returns Prometheus metrics and is not intended to be accessed directly, as the Go proxy running in the authentik server container fetches data from this endpoint and serves it on a separate port (9300 by default), which can be scraped by Prometheus without being exposed publicly. authentik 2024.8.5 and 2024.10.3 fix this issue. Since the /-/metrics/ endpoint is not intended to be accessed publicly, requests to the endpoint can be blocked by the reverse proxy/load balancer used in conjunction with authentik. | ||||
CVE-2024-0914 | 2 Opencryptoki Project, Redhat | 3 Opencryptoki, Enterprise Linux, Rhel Eus | 2024-11-24 | 5.9 Medium |
A timing side-channel vulnerability has been discovered in the opencryptoki package while processing RSA PKCS#1 v1.5 padded ciphertexts. This flaw could potentially enable unauthorized RSA ciphertext decryption or signing, even without access to the corresponding private key. | ||||
CVE-2024-41828 | 1 Jetbrains | 1 Teamcity | 2024-11-21 | 2.6 Low |
In JetBrains TeamCity before 2024.07 comparison of authorization tokens took non-constant time | ||||
CVE-2024-40640 | 2024-11-21 | 2.9 Low | ||
vodozemac is an open source implementation of Olm and Megolm in pure Rust. Versions before 0.7.0 of vodozemac use a non-constant time base64 implementation for importing key material for Megolm group sessions and `PkDecryption` Ed25519 secret keys. This flaw might allow an attacker to infer some information about the secret key material through a side-channel attack. The use of a non-constant time base64 implementation might allow an attacker to observe timing variations in the encoding and decoding operations of the secret key material. This could potentially provide insights into the underlying secret key material. The impact of this vulnerability is considered low because exploiting the attacker is required to have access to high precision timing measurements, as well as repeated access to the base64 encoding or decoding processes. Additionally, the estimated leakage amount is bounded and low according to the referenced paper. This has been patched in commit 734b6c6948d4b2bdee3dd8b4efa591d93a61d272 which has been included in release version 0.7.0. Users are advised to upgrade. There are no known workarounds for this vulnerability. | ||||
CVE-2024-36405 | 1 Open Quantum Safe | 1 Liboqs | 2024-11-21 | 5.9 Medium |
liboqs is a C-language cryptographic library that provides implementations of post-quantum cryptography algorithms. A control-flow timing lean has been identified in the reference implementation of the Kyber key encapsulation mechanism when it is compiled with Clang 15-18 for `-Os`, `-O1`, and other compilation options. A proof-of-concept local attack on the reference implementation leaks the entire ML-KEM 512 secret key in ~10 minutes using end-to-end decapsulation timing measurements. The issue has been fixed in version 0.10.1. As a possible workaround, some compiler options may produce vectorized code that does not leak secret information, however relying on these compiler options as a workaround may not be reliable. | ||||
CVE-2024-30171 | 1 Redhat | 6 Amq Broker, Apache Camel Spring Boot, Camel Quarkus and 3 more | 2024-11-21 | 5.9 Medium |
An issue was discovered in Bouncy Castle Java TLS API and JSSE Provider before 1.78. Timing-based leakage may occur in RSA based handshakes because of exception processing. | ||||
CVE-2024-21671 | 1 Vantage6 | 1 Vantage6 | 2024-11-21 | 3.7 Low |
The vantage6 technology enables to manage and deploy privacy enhancing technologies like Federated Learning (FL) and Multi-Party Computation (MPC). It is possible to find out usernames from the response time of login requests. This could aid attackers in credential attacks. Version 4.2.0 patches this vulnerability. | ||||
CVE-2024-0202 | 1 Cryptlib | 1 Cryptlib | 2024-11-21 | 5.9 Medium |
A security vulnerability has been identified in the cryptlib cryptographic library when cryptlib is compiled with the support for RSA key exchange ciphersuites in TLS (by setting the USE_RSA_SUITES define), it will be vulnerable to the timing variant of the Bleichenbacher attack. An attacker that is able to perform a large number of connections to the server will be able to decrypt RSA ciphertexts or forge signatures using server's certificate. | ||||
CVE-2023-4421 | 1 Mozilla | 1 Nss | 2024-11-21 | 6.5 Medium |
The NSS code used for checking PKCS#1 v1.5 was leaking information useful in mounting Bleichenbacher-like attacks. Both the overall correctness of the padding as well as the length of the encrypted message was leaking through timing side-channel. By sending large number of attacker-selected ciphertexts, the attacker would be able to decrypt a previously intercepted PKCS#1 v1.5 ciphertext (for example, to decrypt a TLS session that used RSA key exchange), or forge a signature using the victim's key. The issue was fixed by implementing the implicit rejection algorithm, in which the NSS returns a deterministic random message in case invalid padding is detected, as proposed in the Marvin Attack paper. This vulnerability affects NSS < 3.61. |