Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16451 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-54160 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: firmware: arm_sdei: Fix sleep from invalid context BUG Running a preempt-rt (v6.2-rc3-rt1) based kernel on an Ampere Altra triggers: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 24, name: cpuhp/0 preempt_count: 0, expected: 0 RCU nest depth: 0, expected: 0 3 locks held by cpuhp/0/24: #0: ffffda30217c70d0 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248 #1: ffffda30217c7120 (cpuhp_state-up){+.+.}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248 #2: ffffda3021c711f0 (sdei_list_lock){....}-{3:3}, at: sdei_cpuhp_up+0x3c/0x130 irq event stamp: 36 hardirqs last enabled at (35): [<ffffda301e85b7bc>] finish_task_switch+0xb4/0x2b0 hardirqs last disabled at (36): [<ffffda301e812fec>] cpuhp_thread_fun+0x21c/0x248 softirqs last enabled at (0): [<ffffda301e80b184>] copy_process+0x63c/0x1ac0 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 0 PID: 24 Comm: cpuhp/0 Not tainted 5.19.0-rc3-rt5-[...] Hardware name: WIWYNN Mt.Jade Server [...] Call trace: dump_backtrace+0x114/0x120 show_stack+0x20/0x70 dump_stack_lvl+0x9c/0xd8 dump_stack+0x18/0x34 __might_resched+0x188/0x228 rt_spin_lock+0x70/0x120 sdei_cpuhp_up+0x3c/0x130 cpuhp_invoke_callback+0x250/0xf08 cpuhp_thread_fun+0x120/0x248 smpboot_thread_fn+0x280/0x320 kthread+0x130/0x140 ret_from_fork+0x10/0x20 sdei_cpuhp_up() is called in the STARTING hotplug section, which runs with interrupts disabled. Use a CPUHP_AP_ONLINE_DYN entry instead to execute the cpuhp cb later, with preemption enabled. SDEI originally got its own cpuhp slot to allow interacting with perf. It got superseded by pNMI and this early slot is not relevant anymore. [1] Some SDEI calls (e.g. SDEI_1_0_FN_SDEI_PE_MASK) take actions on the calling CPU. It is checked that preemption is disabled for them. _ONLINE cpuhp cb are executed in the 'per CPU hotplug thread'. Preemption is enabled in those threads, but their cpumask is limited to 1 CPU. Move 'WARN_ON_ONCE(preemptible())' statements so that SDEI cpuhp cb don't trigger them. Also add a check for the SDEI_1_0_FN_SDEI_PRIVATE_RESET SDEI call which acts on the calling CPU. [1]: https://lore.kernel.org/all/[email protected]/ | ||||
| CVE-2025-68743 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: mshv: Fix create memory region overlap check The current check is incorrect; it only checks if the beginning or end of a region is within an existing region. This doesn't account for userspace specifying a region that begins before and ends after an existing region. Change the logic to a range intersection check against gfns and uaddrs for each region. Remove mshv_partition_region_by_uaddr() as it is no longer used. | ||||
| CVE-2023-54144 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix kernel warning during topology setup This patch fixes the following kernel warning seen during driver load by correctly initializing the p2plink attr before creating the sysfs file: [ +0.002865] ------------[ cut here ]------------ [ +0.002327] kobject: '(null)' (0000000056260cfb): is not initialized, yet kobject_put() is being called. [ +0.004780] WARNING: CPU: 32 PID: 1006 at lib/kobject.c:718 kobject_put+0xaa/0x1c0 [ +0.001361] Call Trace: [ +0.001234] <TASK> [ +0.001067] kfd_remove_sysfs_node_entry+0x24a/0x2d0 [amdgpu] [ +0.003147] kfd_topology_update_sysfs+0x3d/0x750 [amdgpu] [ +0.002890] kfd_topology_add_device+0xbd7/0xc70 [amdgpu] [ +0.002844] ? lock_release+0x13c/0x2e0 [ +0.001936] ? smu_cmn_send_smc_msg_with_param+0x1e8/0x2d0 [amdgpu] [ +0.003313] ? amdgpu_dpm_get_mclk+0x54/0x60 [amdgpu] [ +0.002703] kgd2kfd_device_init.cold+0x39f/0x4ed [amdgpu] [ +0.002930] amdgpu_amdkfd_device_init+0x13d/0x1f0 [amdgpu] [ +0.002944] amdgpu_device_init.cold+0x1464/0x17b4 [amdgpu] [ +0.002970] ? pci_bus_read_config_word+0x43/0x80 [ +0.002380] amdgpu_driver_load_kms+0x15/0x100 [amdgpu] [ +0.002744] amdgpu_pci_probe+0x147/0x370 [amdgpu] [ +0.002522] local_pci_probe+0x40/0x80 [ +0.001896] work_for_cpu_fn+0x10/0x20 [ +0.001892] process_one_work+0x26e/0x5a0 [ +0.002029] worker_thread+0x1fd/0x3e0 [ +0.001890] ? process_one_work+0x5a0/0x5a0 [ +0.002115] kthread+0xea/0x110 [ +0.001618] ? kthread_complete_and_exit+0x20/0x20 [ +0.002422] ret_from_fork+0x1f/0x30 [ +0.001808] </TASK> [ +0.001103] irq event stamp: 59837 [ +0.001718] hardirqs last enabled at (59849): [<ffffffffb30fab12>] __up_console_sem+0x52/0x60 [ +0.004414] hardirqs last disabled at (59860): [<ffffffffb30faaf7>] __up_console_sem+0x37/0x60 [ +0.004414] softirqs last enabled at (59654): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004205] softirqs last disabled at (59649): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004203] ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2025-68742 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Fix invalid prog->stats access when update_effective_progs fails Syzkaller triggers an invalid memory access issue following fault injection in update_effective_progs. The issue can be described as follows: __cgroup_bpf_detach update_effective_progs compute_effective_progs bpf_prog_array_alloc <-- fault inject purge_effective_progs /* change to dummy_bpf_prog */ array->items[index] = &dummy_bpf_prog.prog ---softirq start--- __do_softirq ... __cgroup_bpf_run_filter_skb __bpf_prog_run_save_cb bpf_prog_run stats = this_cpu_ptr(prog->stats) /* invalid memory access */ flags = u64_stats_update_begin_irqsave(&stats->syncp) ---softirq end--- static_branch_dec(&cgroup_bpf_enabled_key[atype]) The reason is that fault injection caused update_effective_progs to fail and then changed the original prog into dummy_bpf_prog.prog in purge_effective_progs. Then a softirq came, and accessing the members of dummy_bpf_prog.prog in the softirq triggers invalid mem access. To fix it, skip updating stats when stats is NULL. | ||||
| CVE-2023-54141 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Add missing hw_ops->get_ring_selector() for IPQ5018 During sending data after clients connected, hw_ops->get_ring_selector() will be called. But for IPQ5018, this member isn't set, and the following NULL pointer exception will be occurred: [ 38.840478] 8<--- cut here --- [ 38.840517] Unable to handle kernel NULL pointer dereference at virtual address 00000000 ... [ 38.923161] PC is at 0x0 [ 38.927930] LR is at ath11k_dp_tx+0x70/0x730 [ath11k] ... [ 39.063264] Process hostapd (pid: 1034, stack limit = 0x801ceb3d) [ 39.068994] Stack: (0x856a9a68 to 0x856aa000) ... [ 39.438467] [<7f323804>] (ath11k_dp_tx [ath11k]) from [<7f314e6c>] (ath11k_mac_op_tx+0x80/0x190 [ath11k]) [ 39.446607] [<7f314e6c>] (ath11k_mac_op_tx [ath11k]) from [<7f17dbe0>] (ieee80211_handle_wake_tx_queue+0x7c/0xc0 [mac80211]) [ 39.456162] [<7f17dbe0>] (ieee80211_handle_wake_tx_queue [mac80211]) from [<7f174450>] (ieee80211_probereq_get+0x584/0x704 [mac80211]) [ 39.467443] [<7f174450>] (ieee80211_probereq_get [mac80211]) from [<7f178c40>] (ieee80211_tx_prepare_skb+0x1f8/0x248 [mac80211]) [ 39.479334] [<7f178c40>] (ieee80211_tx_prepare_skb [mac80211]) from [<7f179e28>] (__ieee80211_subif_start_xmit+0x32c/0x3d4 [mac80211]) [ 39.491053] [<7f179e28>] (__ieee80211_subif_start_xmit [mac80211]) from [<7f17af08>] (ieee80211_tx_control_port+0x19c/0x288 [mac80211]) [ 39.502946] [<7f17af08>] (ieee80211_tx_control_port [mac80211]) from [<7f0fc704>] (nl80211_tx_control_port+0x174/0x1d4 [cfg80211]) [ 39.515017] [<7f0fc704>] (nl80211_tx_control_port [cfg80211]) from [<808ceac4>] (genl_rcv_msg+0x154/0x340) [ 39.526814] [<808ceac4>] (genl_rcv_msg) from [<808cdb74>] (netlink_rcv_skb+0xb8/0x11c) [ 39.536446] [<808cdb74>] (netlink_rcv_skb) from [<808ce1d0>] (genl_rcv+0x28/0x34) [ 39.544344] [<808ce1d0>] (genl_rcv) from [<808cd234>] (netlink_unicast+0x174/0x274) [ 39.551895] [<808cd234>] (netlink_unicast) from [<808cd510>] (netlink_sendmsg+0x1dc/0x440) [ 39.559362] [<808cd510>] (netlink_sendmsg) from [<808596e0>] (____sys_sendmsg+0x1a8/0x1fc) [ 39.567697] [<808596e0>] (____sys_sendmsg) from [<8085b1a8>] (___sys_sendmsg+0xa4/0xdc) [ 39.575941] [<8085b1a8>] (___sys_sendmsg) from [<8085b310>] (sys_sendmsg+0x44/0x74) [ 39.583841] [<8085b310>] (sys_sendmsg) from [<80300060>] (ret_fast_syscall+0x0/0x40) ... [ 39.620734] Code: bad PC value [ 39.625869] ---[ end trace 8aef983ad3cbc032 ]--- | ||||
| CVE-2025-68736 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: landlock: Fix handling of disconnected directories Disconnected files or directories can appear when they are visible and opened from a bind mount, but have been renamed or moved from the source of the bind mount in a way that makes them inaccessible from the mount point (i.e. out of scope). Previously, access rights tied to files or directories opened through a disconnected directory were collected by walking the related hierarchy down to the root of the filesystem, without taking into account the mount point because it couldn't be found. This could lead to inconsistent access results, potential access right widening, and hard-to-debug renames, especially since such paths cannot be printed. For a sandboxed task to create a disconnected directory, it needs to have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to the underlying source of the bind mount, and read access to the related mount point. Because a sandboxed task cannot acquire more access rights than those defined by its Landlock domain, this could lead to inconsistent access rights due to missing permissions that should be inherited from the mount point hierarchy, while inheriting permissions from the filesystem hierarchy hidden by this mount point instead. Landlock now handles files and directories opened from disconnected directories by taking into account the filesystem hierarchy when the mount point is not found in the hierarchy walk, and also always taking into account the mount point from which these disconnected directories were opened. This ensures that a rename is not allowed if it would widen access rights [1]. The rationale is that, even if disconnected hierarchies might not be visible or accessible to a sandboxed task, relying on the collected access rights from them improves the guarantee that access rights will not be widened during a rename because of the access right comparison between the source and the destination (see LANDLOCK_ACCESS_FS_REFER). It may look like this would grant more access on disconnected files and directories, but the security policies are always enforced for all the evaluated hierarchies. This new behavior should be less surprising to users and safer from an access control perspective. Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and fix the related comment. Because opened files have their access rights stored in the related file security properties, there is no impact for disconnected or unlinked files. | ||||
| CVE-2023-54147 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: platform: mtk-mdp3: Add missing check and free for ida_alloc Add the check for the return value of the ida_alloc in order to avoid NULL pointer dereference. Moreover, free allocated "ctx->id" if mdp_m2m_open fails later in order to avoid memory leak. | ||||
| CVE-2023-54140 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse A syzbot stress test using a corrupted disk image reported that mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can panic if the kernel is booted with panic_on_warn. This is because nilfs2 keeps buffer pointers in local structures for some metadata and reuses them, but such buffers may be forcibly discarded by nilfs_clear_dirty_page() in some critical situations. This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only"), but the issue has potentially existed before. Fix this issue by checking the uptodate flag when attempting to reuse an internally held buffer, and reloading the metadata instead of reusing the buffer if the flag was lost. | ||||
| CVE-2023-54149 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses When using the felix driver (the only one which supports UC filtering and MC filtering) as a DSA master for a random other DSA switch, one can see the following stack trace when the downstream switch ports join a VLAN-aware bridge: ============================= WARNING: suspicious RCU usage ----------------------------- net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage! stack backtrace: Workqueue: dsa_ordered dsa_slave_switchdev_event_work Call trace: lockdep_rcu_suspicious+0x170/0x210 vlan_for_each+0x8c/0x188 dsa_slave_sync_uc+0x128/0x178 __hw_addr_sync_dev+0x138/0x158 dsa_slave_set_rx_mode+0x58/0x70 __dev_set_rx_mode+0x88/0xa8 dev_uc_add+0x74/0xa0 dsa_port_bridge_host_fdb_add+0xec/0x180 dsa_slave_switchdev_event_work+0x7c/0x1c8 process_one_work+0x290/0x568 What it's saying is that vlan_for_each() expects rtnl_lock() context and it's not getting it, when it's called from the DSA master's ndo_set_rx_mode(). The caller of that - dsa_slave_set_rx_mode() - is the slave DSA interface's dsa_port_bridge_host_fdb_add() which comes from the deferred dsa_slave_switchdev_event_work(). We went to great lengths to avoid the rtnl_lock() context in that call path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not an option due to the possibility of deadlocking when calling dsa_flush_workqueue() from the call paths that do hold rtnl_lock() - basically all of them. So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(), the state of the 8021q driver on this device is really not protected from concurrent access by anything. Looking at net/8021q/, I don't think that vlan_info->vid_list was particularly designed with RCU traversal in mind, so introducing an RCU read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so easy, and it also wouldn't be exactly what we need anyway. In general I believe that the solution isn't in net/8021q/ anyway; vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock() to be held per se - since it's not a netdev state change that we're blocking, but rather, just concurrent additions/removals to a VLAN list. We don't even need sleepable context - the callback of vlan_for_each() just schedules deferred work. The proposed escape is to remove the dependency on vlan_for_each() and to open-code a non-sleepable, rtnl-free alternative to that, based on copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and .ndo_vlan_rx_kill_vid(). | ||||
| CVE-2025-68750 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: usb: potential integer overflow in usbg_make_tpg() The variable tpgt in usbg_make_tpg() is defined as unsigned long and is assigned to tpgt->tport_tpgt, which is defined as u16. This may cause an integer overflow when tpgt is greater than USHRT_MAX (65535). I haven't tried to trigger it myself, but it is possible to trigger it by calling usbg_make_tpg() with a large value for tpgt. I modified the type of tpgt to match tpgt->tport_tpgt and adjusted the relevant code accordingly. This patch is similar to commit 59c816c1f24d ("vhost/scsi: potential memory corruption"). | ||||
| CVE-2023-54157 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: binder: fix UAF of alloc->vma in race with munmap() [ cmllamas: clean forward port from commit 015ac18be7de ("binder: fix UAF of alloc->vma in race with munmap()") in 5.10 stable. It is needed in mainline after the revert of commit a43cfc87caaf ("android: binder: stop saving a pointer to the VMA") as pointed out by Liam. The commit log and tags have been tweaked to reflect this. ] In commit 720c24192404 ("ANDROID: binder: change down_write to down_read") binder assumed the mmap read lock is sufficient to protect alloc->vma inside binder_update_page_range(). This used to be accurate until commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in munmap"), which now downgrades the mmap_lock after detaching the vma from the rbtree in munmap(). Then it proceeds to teardown and free the vma with only the read lock held. This means that accesses to alloc->vma in binder_update_page_range() now will race with vm_area_free() in munmap() and can cause a UAF as shown in the following KASAN trace: ================================================================== BUG: KASAN: use-after-free in vm_insert_page+0x7c/0x1f0 Read of size 8 at addr ffff16204ad00600 by task server/558 CPU: 3 PID: 558 Comm: server Not tainted 5.10.150-00001-gdc8dcf942daa #1 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x2a0 show_stack+0x18/0x2c dump_stack+0xf8/0x164 print_address_description.constprop.0+0x9c/0x538 kasan_report+0x120/0x200 __asan_load8+0xa0/0xc4 vm_insert_page+0x7c/0x1f0 binder_update_page_range+0x278/0x50c binder_alloc_new_buf+0x3f0/0xba0 binder_transaction+0x64c/0x3040 binder_thread_write+0x924/0x2020 binder_ioctl+0x1610/0x2e5c __arm64_sys_ioctl+0xd4/0x120 el0_svc_common.constprop.0+0xac/0x270 do_el0_svc+0x38/0xa0 el0_svc+0x1c/0x2c el0_sync_handler+0xe8/0x114 el0_sync+0x180/0x1c0 Allocated by task 559: kasan_save_stack+0x38/0x6c __kasan_kmalloc.constprop.0+0xe4/0xf0 kasan_slab_alloc+0x18/0x2c kmem_cache_alloc+0x1b0/0x2d0 vm_area_alloc+0x28/0x94 mmap_region+0x378/0x920 do_mmap+0x3f0/0x600 vm_mmap_pgoff+0x150/0x17c ksys_mmap_pgoff+0x284/0x2dc __arm64_sys_mmap+0x84/0xa4 el0_svc_common.constprop.0+0xac/0x270 do_el0_svc+0x38/0xa0 el0_svc+0x1c/0x2c el0_sync_handler+0xe8/0x114 el0_sync+0x180/0x1c0 Freed by task 560: kasan_save_stack+0x38/0x6c kasan_set_track+0x28/0x40 kasan_set_free_info+0x24/0x4c __kasan_slab_free+0x100/0x164 kasan_slab_free+0x14/0x20 kmem_cache_free+0xc4/0x34c vm_area_free+0x1c/0x2c remove_vma+0x7c/0x94 __do_munmap+0x358/0x710 __vm_munmap+0xbc/0x130 __arm64_sys_munmap+0x4c/0x64 el0_svc_common.constprop.0+0xac/0x270 do_el0_svc+0x38/0xa0 el0_svc+0x1c/0x2c el0_sync_handler+0xe8/0x114 el0_sync+0x180/0x1c0 [...] ================================================================== To prevent the race above, revert back to taking the mmap write lock inside binder_update_page_range(). One might expect an increase of mmap lock contention. However, binder already serializes these calls via top level alloc->mutex. Also, there was no performance impact shown when running the binder benchmark tests. | ||||
| CVE-2023-54150 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/amd: Fix an out of bounds error in BIOS parser The array is hardcoded to 8 in atomfirmware.h, but firmware provides a bigger one sometimes. Deferencing the larger array causes an out of bounds error. commit 4fc1ba4aa589 ("drm/amd/display: fix array index out of bound error in bios parser") fixed some of this, but there are two other cases not covered by it. Fix those as well. | ||||
| CVE-2023-54135 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: maple_tree: fix potential out-of-bounds access in mas_wr_end_piv() Check the write offset end bounds before using it as the offset into the pivot array. This avoids a possible out-of-bounds access on the pivot array if the write extends to the last slot in the node, in which case the node maximum should be used as the end pivot. akpm: this doesn't affect any current callers, but new users of mapletree may encounter this problem if backported into earlier kernels, so let's fix it in -stable kernels in case of this. | ||||
| CVE-2023-54159 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: usb: mtu3: fix kernel panic at qmu transfer done irq handler When handle qmu transfer irq, it will unlock @mtu->lock before give back request, if another thread handle disconnect event at the same time, and try to disable ep, it may lock @mtu->lock and free qmu ring, then qmu irq hanlder may get a NULL gpd, avoid the KE by checking gpd's value before handling it. e.g. qmu done irq on cpu0 thread running on cpu1 qmu_done_tx() handle gpd [0] mtu3_requ_complete() mtu3_gadget_ep_disable() unlock @mtu->lock give back request lock @mtu->lock mtu3_ep_disable() mtu3_gpd_ring_free() unlock @mtu->lock lock @mtu->lock get next gpd [1] [1]: goto [0] to handle next gpd, and next gpd may be NULL. | ||||
| CVE-2023-54136 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: serial: sprd: Fix DMA buffer leak issue Release DMA buffer when _probe() returns failure to avoid memory leak. | ||||
| CVE-2025-68738 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: fix null pointer deref in mt7996_conf_tx() If a link does not have an assigned channel yet, mt7996_vif_link returns NULL. We still need to store the updated queue settings in that case, and apply them later. Move the location of the queue params to within struct mt7996_vif_link. | ||||
| CVE-2023-54146 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/kexec: Fix double-free of elf header buffer After b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer"), freeing image->elf_headers in the error path of crash_load_segments() is not needed because kimage_file_post_load_cleanup() will take care of that later. And not clearing it could result in a double-free. Drop the superfluous vfree() call at the error path of crash_load_segments(). | ||||
| CVE-2023-54153 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: turn quotas off if mount failed after enabling quotas Yi found during a review of the patch "ext4: don't BUG on inconsistent journal feature" that when ext4_mark_recovery_complete() returns an error value, the error handling path does not turn off the enabled quotas, which triggers the following kmemleak: ================================================================ unreferenced object 0xffff8cf68678e7c0 (size 64): comm "mount", pid 746, jiffies 4294871231 (age 11.540s) hex dump (first 32 bytes): 00 90 ef 82 f6 8c ff ff 00 00 00 00 41 01 00 00 ............A... c7 00 00 00 bd 00 00 00 0a 00 00 00 48 00 00 00 ............H... backtrace: [<00000000c561ef24>] __kmem_cache_alloc_node+0x4d4/0x880 [<00000000d4e621d7>] kmalloc_trace+0x39/0x140 [<00000000837eee74>] v2_read_file_info+0x18a/0x3a0 [<0000000088f6c877>] dquot_load_quota_sb+0x2ed/0x770 [<00000000340a4782>] dquot_load_quota_inode+0xc6/0x1c0 [<0000000089a18bd5>] ext4_enable_quotas+0x17e/0x3a0 [ext4] [<000000003a0268fa>] __ext4_fill_super+0x3448/0x3910 [ext4] [<00000000b0f2a8a8>] ext4_fill_super+0x13d/0x340 [ext4] [<000000004a9489c4>] get_tree_bdev+0x1dc/0x370 [<000000006e723bf1>] ext4_get_tree+0x1d/0x30 [ext4] [<00000000c7cb663d>] vfs_get_tree+0x31/0x160 [<00000000320e1bed>] do_new_mount+0x1d5/0x480 [<00000000c074654c>] path_mount+0x22e/0xbe0 [<0000000003e97a8e>] do_mount+0x95/0xc0 [<000000002f3d3736>] __x64_sys_mount+0xc4/0x160 [<0000000027d2140c>] do_syscall_64+0x3f/0x90 ================================================================ To solve this problem, we add a "failed_mount10" tag, and call ext4_quota_off_umount() in this tag to release the enabled qoutas. | ||||
| CVE-2025-68739 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: PM / devfreq: hisi: Fix potential UAF in OPP handling Ensure all required data is acquired before calling dev_pm_opp_put(opp) to maintain correct resource acquisition and release order. | ||||
| CVE-2023-54137 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vfio/type1: fix cap_migration information leak Fix an information leak where an uninitialized hole in struct vfio_iommu_type1_info_cap_migration on the stack is exposed to userspace. The definition of struct vfio_iommu_type1_info_cap_migration contains a hole as shown in this pahole(1) output: struct vfio_iommu_type1_info_cap_migration { struct vfio_info_cap_header header; /* 0 8 */ __u32 flags; /* 8 4 */ /* XXX 4 bytes hole, try to pack */ __u64 pgsize_bitmap; /* 16 8 */ __u64 max_dirty_bitmap_size; /* 24 8 */ /* size: 32, cachelines: 1, members: 4 */ /* sum members: 28, holes: 1, sum holes: 4 */ /* last cacheline: 32 bytes */ }; The cap_mig variable is filled in without initializing the hole: static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_cap_migration cap_mig; cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION; cap_mig.header.version = 1; cap_mig.flags = 0; /* support minimum pgsize */ cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap); cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX; return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig)); } The structure is then copied to a temporary location on the heap. At this point it's already too late and ioctl(VFIO_IOMMU_GET_INFO) copies it to userspace later: int vfio_info_add_capability(struct vfio_info_cap *caps, struct vfio_info_cap_header *cap, size_t size) { struct vfio_info_cap_header *header; header = vfio_info_cap_add(caps, size, cap->id, cap->version); if (IS_ERR(header)) return PTR_ERR(header); memcpy(header + 1, cap + 1, size - sizeof(*header)); return 0; } This issue was found by code inspection. | ||||