Total
1313 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-50041 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: i40e: Fix macvlan leak by synchronizing access to mac_filter_hash This patch addresses a macvlan leak issue in the i40e driver caused by concurrent access to vsi->mac_filter_hash. The leak occurs when multiple threads attempt to modify the mac_filter_hash simultaneously, leading to inconsistent state and potential memory leaks. To fix this, we now wrap the calls to i40e_del_mac_filter() and zeroing vf->default_lan_addr.addr with spin_lock/unlock_bh(&vsi->mac_filter_hash_lock), ensuring atomic operations and preventing concurrent access. Additionally, we add lockdep_assert_held(&vsi->mac_filter_hash_lock) in i40e_add_mac_filter() to help catch similar issues in the future. Reproduction steps: 1. Spawn VFs and configure port vlan on them. 2. Trigger concurrent macvlan operations (e.g., adding and deleting portvlan and/or mac filters). 3. Observe the potential memory leak and inconsistent state in the mac_filter_hash. This synchronization ensures the integrity of the mac_filter_hash and prevents the described leak. | ||||
CVE-2024-44944 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: ctnetlink: use helper function to calculate expect ID Delete expectation path is missing a call to the nf_expect_get_id() helper function to calculate the expectation ID, otherwise LSB of the expectation object address is leaked to userspace. | ||||
CVE-2024-41023 | 1 Redhat | 2 Enterprise Linux, Rhel Eus | 2025-05-04 | 6.1 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: Fix task_struct reference leak During the execution of the following stress test with linux-rt: stress-ng --cyclic 30 --timeout 30 --minimize --quiet kmemleak frequently reported a memory leak concerning the task_struct: unreferenced object 0xffff8881305b8000 (size 16136): comm "stress-ng", pid 614, jiffies 4294883961 (age 286.412s) object hex dump (first 32 bytes): 02 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .@.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ debug hex dump (first 16 bytes): 53 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 S............... backtrace: [<00000000046b6790>] dup_task_struct+0x30/0x540 [<00000000c5ca0f0b>] copy_process+0x3d9/0x50e0 [<00000000ced59777>] kernel_clone+0xb0/0x770 [<00000000a50befdc>] __do_sys_clone+0xb6/0xf0 [<000000001dbf2008>] do_syscall_64+0x5d/0xf0 [<00000000552900ff>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 The issue occurs in start_dl_timer(), which increments the task_struct reference count and sets a timer. The timer callback, dl_task_timer, is supposed to decrement the reference count upon expiration. However, if enqueue_task_dl() is called before the timer expires and cancels it, the reference count is not decremented, leading to the leak. This patch fixes the reference leak by ensuring the task_struct reference count is properly decremented when the timer is canceled. | ||||
CVE-2024-41006 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix a memory leak in nr_heartbeat_expiry() syzbot reported a memory leak in nr_create() [0]. Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.") added sock_hold() to the nr_heartbeat_expiry() function, where a) a socket has a SOCK_DESTROY flag or b) a listening socket has a SOCK_DEAD flag. But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor has already been closed and the nr_release() function has been called. So it makes no sense to hold the reference count because no one will call another nr_destroy_socket() and put it as in the case "b." nr_connect nr_establish_data_link nr_start_heartbeat nr_release switch (nr->state) case NR_STATE_3 nr->state = NR_STATE_2 sock_set_flag(sk, SOCK_DESTROY); nr_rx_frame nr_process_rx_frame switch (nr->state) case NR_STATE_2 nr_state2_machine() nr_disconnect() nr_sk(sk)->state = NR_STATE_0 sock_set_flag(sk, SOCK_DEAD) nr_heartbeat_expiry switch (nr->state) case NR_STATE_0 if (sock_flag(sk, SOCK_DESTROY) || (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_DEAD))) sock_hold() // ( !!! ) nr_destroy_socket() To fix the memory leak, let's call sock_hold() only for a listening socket. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with Syzkaller. [0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16 | ||||
CVE-2024-40934 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: HID: logitech-dj: Fix memory leak in logi_dj_recv_switch_to_dj_mode() Fix a memory leak on logi_dj_recv_send_report() error path. | ||||
CVE-2024-39493 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - Fix ADF_DEV_RESET_SYNC memory leak Using completion_done to determine whether the caller has gone away only works after a complete call. Furthermore it's still possible that the caller has not yet called wait_for_completion, resulting in another potential UAF. Fix this by making the caller use cancel_work_sync and then freeing the memory safely. | ||||
CVE-2024-38632 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: fix potential memory leak in vfio_intx_enable() If vfio_irq_ctx_alloc() failed will lead to 'name' memory leak. | ||||
CVE-2024-36954 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tipc: fix a possible memleak in tipc_buf_append __skb_linearize() doesn't free the skb when it fails, so move '*buf = NULL' after __skb_linearize(), so that the skb can be freed on the err path. | ||||
CVE-2024-27064 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix a memory leak in nf_tables_updchain If nft_netdev_register_hooks() fails, the memory associated with nft_stats is not freed, causing a memory leak. This patch fixes it by moving nft_stats_alloc() down after nft_netdev_register_hooks() succeeds. | ||||
CVE-2024-27012 | 3 Fedoraproject, Linux, Redhat | 4 Fedora, Linux Kernel, Enterprise Linux and 1 more | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: restore set elements when delete set fails From abort path, nft_mapelem_activate() needs to restore refcounters to the original state. Currently, it uses the set->ops->walk() to iterate over these set elements. The existing set iterator skips inactive elements in the next generation, this does not work from the abort path to restore the original state since it has to skip active elements instead (not inactive ones). This patch moves the check for inactive elements to the set iterator callback, then it reverses the logic for the .activate case which needs to skip active elements. Toggle next generation bit for elements when delete set command is invoked and call nft_clear() from .activate (abort) path to restore the next generation bit. The splat below shows an object in mappings memleak: [43929.457523] ------------[ cut here ]------------ [43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [...] [43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 [43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246 [43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000 [43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550 [43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f [43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0 [43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002 [43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0 [43929.458114] Call Trace: [43929.458118] <TASK> [43929.458121] ? __warn+0x9f/0x1a0 [43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458188] ? report_bug+0x1b1/0x1e0 [43929.458196] ? handle_bug+0x3c/0x70 [43929.458200] ? exc_invalid_op+0x17/0x40 [43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables] [43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables] [43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables] [43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables] [43929.458512] ? rb_insert_color+0x2e/0x280 [43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables] [43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables] [43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables] [43929.458701] ? __rcu_read_unlock+0x46/0x70 [43929.458709] nft_delset+0xff/0x110 [nf_tables] [43929.458769] nft_flush_table+0x16f/0x460 [nf_tables] [43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables] | ||||
CVE-2024-26888 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: msft: Fix memory leak Fix leaking buffer allocated to send MSFT_OP_LE_MONITOR_ADVERTISEMENT. | ||||
CVE-2024-26831 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net/handshake: Fix handshake_req_destroy_test1 Recently, handshake_req_destroy_test1 started failing: Expected handshake_req_destroy_test == req, but handshake_req_destroy_test == 0000000000000000 req == 0000000060f99b40 not ok 11 req_destroy works This is because "sock_release(sock)" was replaced with "fput(filp)" to address a memory leak. Note that sock_release() is synchronous but fput() usually delays the final close and clean-up. The delay is not consequential in the other cases that were changed but handshake_req_destroy_test1 is testing that handshake_req_cancel() followed by closing the file actually does call the ->hp_destroy method. Thus the PTR_EQ test at the end has to be sure that the final close is complete before it checks the pointer. We cannot use a completion here because if ->hp_destroy is never called (ie, there is an API bug) then the test will hang. Reported by: Guenter Roeck <[email protected]> | ||||
CVE-2023-52581 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-05-04 | 6.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak when more than 255 elements expired When more than 255 elements expired we're supposed to switch to a new gc container structure. This never happens: u8 type will wrap before reaching the boundary and nft_trans_gc_space() always returns true. This means we recycle the initial gc container structure and lose track of the elements that came before. While at it, don't deref 'gc' after we've passed it to call_rcu. | ||||
CVE-2023-52562 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mm/slab_common: fix slab_caches list corruption after kmem_cache_destroy() After the commit in Fixes:, if a module that created a slab cache does not release all of its allocated objects before destroying the cache (at rmmod time), we might end up releasing the kmem_cache object without removing it from the slab_caches list thus corrupting the list as kmem_cache_destroy() ignores the return value from shutdown_cache(), which in turn never removes the kmem_cache object from slabs_list in case __kmem_cache_shutdown() fails to release all of the cache's slabs. This is easily observable on a kernel built with CONFIG_DEBUG_LIST=y as after that ill release the system will immediately trip on list_add, or list_del, assertions similar to the one shown below as soon as another kmem_cache gets created, or destroyed: [ 1041.213632] list_del corruption. next->prev should be ffff89f596fb5768, but was 52f1e5016aeee75d. (next=ffff89f595a1b268) [ 1041.219165] ------------[ cut here ]------------ [ 1041.221517] kernel BUG at lib/list_debug.c:62! [ 1041.223452] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 1041.225408] CPU: 2 PID: 1852 Comm: rmmod Kdump: loaded Tainted: G B W OE 6.5.0 #15 [ 1041.228244] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023 [ 1041.231212] RIP: 0010:__list_del_entry_valid+0xae/0xb0 Another quick way to trigger this issue, in a kernel with CONFIG_SLUB=y, is to set slub_debug to poison the released objects and then just run cat /proc/slabinfo after removing the module that leaks slab objects, in which case the kernel will panic: [ 50.954843] general protection fault, probably for non-canonical address 0xa56b6b6b6b6b6b8b: 0000 [#1] PREEMPT SMP PTI [ 50.961545] CPU: 2 PID: 1495 Comm: cat Kdump: loaded Tainted: G B W OE 6.5.0 #15 [ 50.966808] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc37 05/24/2023 [ 50.972663] RIP: 0010:get_slabinfo+0x42/0xf0 This patch fixes this issue by properly checking shutdown_cache()'s return value before taking the kmem_cache_release() branch. | ||||
CVE-2022-48768 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tracing/histogram: Fix a potential memory leak for kstrdup() kfree() is missing on an error path to free the memory allocated by kstrdup(): p = param = kstrdup(data->params[i], GFP_KERNEL); So it is better to free it via kfree(p). | ||||
CVE-2022-48724 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix potential memory leak in intel_setup_irq_remapping() After commit e3beca48a45b ("irqdomain/treewide: Keep firmware node unconditionally allocated"). For tear down scenario, fn is only freed after fail to allocate ir_domain, though it also should be freed in case dmar_enable_qi returns error. Besides free fn, irq_domain and ir_msi_domain need to be removed as well if intel_setup_irq_remapping fails to enable queued invalidation. Improve the rewinding path by add out_free_ir_domain and out_free_fwnode lables per Baolu's suggestion. | ||||
CVE-2021-47546 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: fix memory leak in fib6_rule_suppress The kernel leaks memory when a `fib` rule is present in IPv6 nftables firewall rules and a suppress_prefix rule is present in the IPv6 routing rules (used by certain tools such as wg-quick). In such scenarios, every incoming packet will leak an allocation in `ip6_dst_cache` slab cache. After some hours of `bpftrace`-ing and source code reading, I tracked down the issue to ca7a03c41753 ("ipv6: do not free rt if FIB_LOOKUP_NOREF is set on suppress rule"). The problem with that change is that the generic `args->flags` always have `FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag `RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not decreasing the refcount when needed. How to reproduce: - Add the following nftables rule to a prerouting chain: meta nfproto ipv6 fib saddr . mark . iif oif missing drop This can be done with: sudo nft create table inet test sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }' sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop - Run: sudo ip -6 rule add table main suppress_prefixlength 0 - Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase with every incoming ipv6 packet. This patch exposes the protocol-specific flags to the protocol specific `suppress` function, and check the protocol-specific `flags` argument for RT6_LOOKUP_F_DST_NOREF instead of the generic FIB_LOOKUP_NOREF when decreasing the refcount, like this. [1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71 [2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99 | ||||
CVE-2021-47513 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: dsa: felix: Fix memory leak in felix_setup_mmio_filtering Avoid a memory leak if there is not a CPU port defined. Addresses-Coverity-ID: 1492897 ("Resource leak") Addresses-Coverity-ID: 1492899 ("Resource leak") | ||||
CVE-2021-47214 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: hugetlb, userfaultfd: fix reservation restore on userfaultfd error Currently in the is_continue case in hugetlb_mcopy_atomic_pte(), if we bail out using "goto out_release_unlock;" in the cases where idx >= size, or !huge_pte_none(), the code will detect that new_pagecache_page == false, and so call restore_reserve_on_error(). In this case I see restore_reserve_on_error() delete the reservation, and the following call to remove_inode_hugepages() will increment h->resv_hugepages causing a 100% reproducible leak. We should treat the is_continue case similar to adding a page into the pagecache and set new_pagecache_page to true, to indicate that there is no reservation to restore on the error path, and we need not call restore_reserve_on_error(). Rename new_pagecache_page to page_in_pagecache to make that clear. | ||||
CVE-2021-47104 | 1 Linux | 1 Linux Kernel | 2025-05-04 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: IB/qib: Fix memory leak in qib_user_sdma_queue_pkts() The wrong goto label was used for the error case and missed cleanup of the pkt allocation. Addresses-Coverity-ID: 1493352 ("Resource leak") |