Total
2191 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-49300 | 1 Linux | 1 Linux Kernel | 2025-12-23 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nbd: fix race between nbd_alloc_config() and module removal When nbd module is being removing, nbd_alloc_config() may be called concurrently by nbd_genl_connect(), although try_module_get() will return false, but nbd_alloc_config() doesn't handle it. The race may lead to the leak of nbd_config and its related resources (e.g, recv_workq) and oops in nbd_read_stat() due to the unload of nbd module as shown below: BUG: kernel NULL pointer dereference, address: 0000000000000040 Oops: 0000 [#1] SMP PTI CPU: 5 PID: 13840 Comm: kworker/u17:33 Not tainted 5.14.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: knbd16-recv recv_work [nbd] RIP: 0010:nbd_read_stat.cold+0x130/0x1a4 [nbd] Call Trace: recv_work+0x3b/0xb0 [nbd] process_one_work+0x1ed/0x390 worker_thread+0x4a/0x3d0 kthread+0x12a/0x150 ret_from_fork+0x22/0x30 Fixing it by checking the return value of try_module_get() in nbd_alloc_config(). As nbd_alloc_config() may return ERR_PTR(-ENODEV), assign nbd->config only when nbd_alloc_config() succeeds to ensure the value of nbd->config is binary (valid or NULL). Also adding a debug message to check the reference counter of nbd_config during module removal. | ||||
| CVE-2022-49288 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-12-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix races among concurrent prealloc proc writes We have no protection against concurrent PCM buffer preallocation changes via proc files, and it may potentially lead to UAF or some weird problem. This patch applies the PCM open_mutex to the proc write operation for avoiding the racy proc writes and the PCM stream open (and further operations). | ||||
| CVE-2022-48901 | 1 Linux | 1 Linux Kernel | 2025-12-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: do not start relocation until in progress drops are done We hit a bug with a recovering relocation on mount for one of our file systems in production. I reproduced this locally by injecting errors into snapshot delete with balance running at the same time. This presented as an error while looking up an extent item WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680 CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8 RIP: 0010:lookup_inline_extent_backref+0x647/0x680 RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000 RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001 R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000 R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000 FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0 Call Trace: <TASK> insert_inline_extent_backref+0x46/0xd0 __btrfs_inc_extent_ref.isra.0+0x5f/0x200 ? btrfs_merge_delayed_refs+0x164/0x190 __btrfs_run_delayed_refs+0x561/0xfa0 ? btrfs_search_slot+0x7b4/0xb30 ? btrfs_update_root+0x1a9/0x2c0 btrfs_run_delayed_refs+0x73/0x1f0 ? btrfs_update_root+0x1a9/0x2c0 btrfs_commit_transaction+0x50/0xa50 ? btrfs_update_reloc_root+0x122/0x220 prepare_to_merge+0x29f/0x320 relocate_block_group+0x2b8/0x550 btrfs_relocate_block_group+0x1a6/0x350 btrfs_relocate_chunk+0x27/0xe0 btrfs_balance+0x777/0xe60 balance_kthread+0x35/0x50 ? btrfs_balance+0xe60/0xe60 kthread+0x16b/0x190 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 </TASK> Normally snapshot deletion and relocation are excluded from running at the same time by the fs_info->cleaner_mutex. However if we had a pending balance waiting to get the ->cleaner_mutex, and a snapshot deletion was running, and then the box crashed, we would come up in a state where we have a half deleted snapshot. Again, in the normal case the snapshot deletion needs to complete before relocation can start, but in this case relocation could very well start before the snapshot deletion completes, as we simply add the root to the dead roots list and wait for the next time the cleaner runs to clean up the snapshot. Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that had a pending drop_progress key. If they do then we know we were in the middle of the drop operation and set a flag on the fs_info. Then balance can wait until this flag is cleared to start up again. If there are DEAD_ROOT's that don't have a drop_progress set then we're safe to start balance right away as we'll be properly protected by the cleaner_mutex. | ||||
| CVE-2024-27000 | 3 Debian, Fedoraproject, Linux | 3 Debian Linux, Fedora, Linux Kernel | 2025-12-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: serial: mxs-auart: add spinlock around changing cts state The uart_handle_cts_change() function in serial_core expects the caller to hold uport->lock. For example, I have seen the below kernel splat, when the Bluetooth driver is loaded on an i.MX28 board. [ 85.119255] ------------[ cut here ]------------ [ 85.124413] WARNING: CPU: 0 PID: 27 at /drivers/tty/serial/serial_core.c:3453 uart_handle_cts_change+0xb4/0xec [ 85.134694] Modules linked in: hci_uart bluetooth ecdh_generic ecc wlcore_sdio configfs [ 85.143314] CPU: 0 PID: 27 Comm: kworker/u3:0 Not tainted 6.6.3-00021-gd62a2f068f92 #1 [ 85.151396] Hardware name: Freescale MXS (Device Tree) [ 85.156679] Workqueue: hci0 hci_power_on [bluetooth] (...) [ 85.191765] uart_handle_cts_change from mxs_auart_irq_handle+0x380/0x3f4 [ 85.198787] mxs_auart_irq_handle from __handle_irq_event_percpu+0x88/0x210 (...) | ||||
| CVE-2025-38448 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-22 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: usb: gadget: u_serial: Fix race condition in TTY wakeup A race condition occurs when gs_start_io() calls either gs_start_rx() or gs_start_tx(), as those functions briefly drop the port_lock for usb_ep_queue(). This allows gs_close() and gserial_disconnect() to clear port.tty and port_usb, respectively. Use the null-safe TTY Port helper function to wake up TTY. Example CPU1: CPU2: gserial_connect() // lock gs_close() // await lock gs_start_rx() // unlock usb_ep_queue() gs_close() // lock, reset port.tty and unlock gs_start_rx() // lock tty_wakeup() // NPE | ||||
| CVE-2024-58248 | 1 Nopcommerce | 1 Nopcommerce | 2025-12-19 | 3.5 Low |
| nopCommerce through 4.90.1 does not offer locking for order placement. Thus there is a race condition with duplicate redeeming of gift cards. | ||||
| CVE-2025-38085 | 2 Debian, Linux | 2 Debian Linux, Linux Kernel | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mm/hugetlb: fix huge_pmd_unshare() vs GUP-fast race huge_pmd_unshare() drops a reference on a page table that may have previously been shared across processes, potentially turning it into a normal page table used in another process in which unrelated VMAs can afterwards be installed. If this happens in the middle of a concurrent gup_fast(), gup_fast() could end up walking the page tables of another process. While I don't see any way in which that immediately leads to kernel memory corruption, it is really weird and unexpected. Fix it with an explicit broadcast IPI through tlb_remove_table_sync_one(), just like we do in khugepaged when removing page tables for a THP collapse. | ||||
| CVE-2025-66446 | 2 1panel, Maxkb | 2 Maxkb, Maxkb | 2025-12-18 | 8.8 High |
| MaxKB is an open-source AI assistant for enterprise. Versions 2.3.1 and below have improper file permissions which allow attackers to overwrite the built-in dynamic linker and other critical files, potentially resulting in privilege escalation. This issue is fixed in version 2.4.0. | ||||
| CVE-2025-66419 | 2 1panel, Maxkb | 2 Maxkb, Maxkb | 2025-12-18 | 8.8 High |
| MaxKB is an open-source AI assistant for enterprise. In versions 2.3.1 and below, the tool module allows an attacker to escape the sandbox environment and escalate privileges under certain concurrent conditions. This issue is fixed in version 2.4.0. | ||||
| CVE-2025-43531 | 1 Apple | 9 Ios, Ipados, Iphone Os and 6 more | 2025-12-18 | 3.1 Low |
| A race condition was addressed with improved state handling. This issue is fixed in watchOS 26.2, Safari 26.2, iOS 18.7.3 and iPadOS 18.7.3, iOS 26.2 and iPadOS 26.2, macOS Tahoe 26.2, visionOS 26.2, tvOS 26.2. Processing maliciously crafted web content may lead to an unexpected process crash. | ||||
| CVE-2025-33235 | 2 Linux, Nvidia | 2 Linux, Resiliency Extension | 2025-12-18 | 7.8 High |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges. | ||||
| CVE-2025-68146 | 1 Tox-dev | 1 Filelock | 2025-12-18 | 6.3 Medium |
| filelock is a platform-independent file lock for Python. In versions prior to 3.20.1, a Time-of-Check-Time-of-Use (TOCTOU) race condition allows local attackers to corrupt or truncate arbitrary user files through symlink attacks. The vulnerability exists in both Unix and Windows lock file creation where filelock checks if a file exists before opening it with O_TRUNC. An attacker can create a symlink pointing to a victim file in the time gap between the check and open, causing os.open() to follow the symlink and truncate the target file. All users of filelock on Unix, Linux, macOS, and Windows systems are impacted. The vulnerability cascades to dependent libraries. The attack requires local filesystem access and ability to create symlinks (standard user permissions on Unix; Developer Mode on Windows 10+). Exploitation succeeds within 1-3 attempts when lock file paths are predictable. The issue is fixed in version 3.20.1. If immediate upgrade is not possible, use SoftFileLock instead of UnixFileLock/WindowsFileLock (note: different locking semantics, may not be suitable for all use cases); ensure lock file directories have restrictive permissions (chmod 0700) to prevent untrusted users from creating symlinks; and/or monitor lock file directories for suspicious symlinks before running trusted applications. These workarounds provide only partial mitigation. The race condition remains exploitable. Upgrading to version 3.20.1 is strongly recommended. | ||||
| CVE-2025-43510 | 1 Apple | 11 Ios, Ipad Os, Ipados and 8 more | 2025-12-18 | 7.8 High |
| A memory corruption issue was addressed with improved lock state checking. This issue is fixed in watchOS 26.1, iOS 18.7.2 and iPadOS 18.7.2, macOS Tahoe 26.1, visionOS 26.1, tvOS 26.1, macOS Sonoma 14.8.2, macOS Sequoia 15.7.2, iOS 26.1 and iPadOS 26.1. A malicious application may cause unexpected changes in memory shared between processes. | ||||
| CVE-2021-47599 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: use latest_dev in btrfs_show_devname The test case btrfs/238 reports the warning below: WARNING: CPU: 3 PID: 481 at fs/btrfs/super.c:2509 btrfs_show_devname+0x104/0x1e8 [btrfs] CPU: 2 PID: 1 Comm: systemd Tainted: G W O 5.14.0-rc1-custom #72 Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: btrfs_show_devname+0x108/0x1b4 [btrfs] show_mountinfo+0x234/0x2c4 m_show+0x28/0x34 seq_read_iter+0x12c/0x3c4 vfs_read+0x29c/0x2c8 ksys_read+0x80/0xec __arm64_sys_read+0x28/0x34 invoke_syscall+0x50/0xf8 do_el0_svc+0x88/0x138 el0_svc+0x2c/0x8c el0t_64_sync_handler+0x84/0xe4 el0t_64_sync+0x198/0x19c Reason: While btrfs_prepare_sprout() moves the fs_devices::devices into fs_devices::seed_list, the btrfs_show_devname() searches for the devices and found none, leading to the warning as in above. Fix: latest_dev is updated according to the changes to the device list. That means we could use the latest_dev->name to show the device name in /proc/self/mounts, the pointer will be always valid as it's assigned before the device is deleted from the list in remove or replace. The RCU protection is sufficient as the device structure is freed after synchronization. | ||||
| CVE-2021-47577 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: io-wq: check for wq exit after adding new worker task_work We check IO_WQ_BIT_EXIT before attempting to create a new worker, and wq exit cancels pending work if we have any. But it's possible to have a race between the two, where creation checks exit finding it not set, but we're in the process of exiting. The exit side will cancel pending creation task_work, but there's a gap where we add task_work after we've canceled existing creations at exit time. Fix this by checking the EXIT bit post adding the creation task_work. If it's set, run the same cancelation that exit does. | ||||
| CVE-2021-47493 | 1 Linux | 1 Linux Kernel | 2025-12-18 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix race between searching chunks and release journal_head from buffer_head Encountered a race between ocfs2_test_bg_bit_allocatable() and jbd2_journal_put_journal_head() resulting in the below vmcore. PID: 106879 TASK: ffff880244ba9c00 CPU: 2 COMMAND: "loop3" Call trace: panic oops_end no_context __bad_area_nosemaphore bad_area_nosemaphore __do_page_fault do_page_fault page_fault [exception RIP: ocfs2_block_group_find_clear_bits+316] ocfs2_block_group_find_clear_bits [ocfs2] ocfs2_cluster_group_search [ocfs2] ocfs2_search_chain [ocfs2] ocfs2_claim_suballoc_bits [ocfs2] __ocfs2_claim_clusters [ocfs2] ocfs2_claim_clusters [ocfs2] ocfs2_local_alloc_slide_window [ocfs2] ocfs2_reserve_local_alloc_bits [ocfs2] ocfs2_reserve_clusters_with_limit [ocfs2] ocfs2_reserve_clusters [ocfs2] ocfs2_lock_refcount_allocators [ocfs2] ocfs2_make_clusters_writable [ocfs2] ocfs2_replace_cow [ocfs2] ocfs2_refcount_cow [ocfs2] ocfs2_file_write_iter [ocfs2] lo_rw_aio loop_queue_work kthread_worker_fn kthread ret_from_fork When ocfs2_test_bg_bit_allocatable() called bh2jh(bg_bh), the bg_bh->b_private NULL as jbd2_journal_put_journal_head() raced and released the jounal head from the buffer head. Needed to take bit lock for the bit 'BH_JournalHead' to fix this race. | ||||
| CVE-2024-35255 | 2 Microsoft, Redhat | 12 Authentication Library, Azure Identity Library For .net, Azure Identity Library For C Plus Plus and 9 more | 2025-12-17 | 5.5 Medium |
| Azure Identity Libraries and Microsoft Authentication Library Elevation of Privilege Vulnerability | ||||
| CVE-2018-15473 | 7 Canonical, Debian, Netapp and 4 more | 25 Ubuntu Linux, Debian Linux, Aff Baseboard Management Controller and 22 more | 2025-12-17 | 5.9 Medium |
| OpenSSH through 7.7 is prone to a user enumeration vulnerability due to not delaying bailout for an invalid authenticating user until after the packet containing the request has been fully parsed, related to auth2-gss.c, auth2-hostbased.c, and auth2-pubkey.c. | ||||
| CVE-2025-21376 | 1 Microsoft | 24 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 21 more | 2025-12-17 | 8.1 High |
| Windows Lightweight Directory Access Protocol (LDAP) Remote Code Execution Vulnerability | ||||
| CVE-2025-43420 | 1 Apple | 3 Macos, Macos Sequoia, Macos Sonoma | 2025-12-17 | 4.7 Medium |
| A race condition was addressed with improved state handling. This issue is fixed in macOS Sequoia 15.7.2, macOS Tahoe 26.1, macOS Sonoma 14.8.2. An app may be able to access sensitive user data. | ||||