Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 10359 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-49888 1 Linux 1 Linux Kernel 2025-05-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: arm64: entry: avoid kprobe recursion The cortex_a76_erratum_1463225_debug_handler() function is called when handling debug exceptions (and synchronous exceptions from BRK instructions), and so is called when a probed function executes. If the compiler does not inline cortex_a76_erratum_1463225_debug_handler(), it can be probed. If cortex_a76_erratum_1463225_debug_handler() is probed, any debug exception or software breakpoint exception will result in recursive exceptions leading to a stack overflow. This can be triggered with the ftrace multiple_probes selftest, and as per the example splat below. This is a regression caused by commit: 6459b8469753e9fe ("arm64: entry: consolidate Cortex-A76 erratum 1463225 workaround") ... which removed the NOKPROBE_SYMBOL() annotation associated with the function. My intent was that cortex_a76_erratum_1463225_debug_handler() would be inlined into its caller, el1_dbg(), which is marked noinstr and cannot be probed. Mark cortex_a76_erratum_1463225_debug_handler() as __always_inline to ensure this. Example splat prior to this patch (with recursive entries elided): | # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events | # echo p do_el0_svc >> /sys/kernel/debug/tracing/kprobe_events | # echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable | Insufficient stack space to handle exception! | ESR: 0x0000000096000047 -- DABT (current EL) | FAR: 0xffff800009cefff0 | Task stack: [0xffff800009cf0000..0xffff800009cf4000] | IRQ stack: [0xffff800008000000..0xffff800008004000] | Overflow stack: [0xffff00007fbc00f0..0xffff00007fbc10f0] | CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2 | Hardware name: linux,dummy-virt (DT) | pstate: 604003c5 (nZCv DAIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : arm64_enter_el1_dbg+0x4/0x20 | lr : el1_dbg+0x24/0x5c | sp : ffff800009cf0000 | x29: ffff800009cf0000 x28: ffff000002c74740 x27: 0000000000000000 | x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 | x23: 00000000604003c5 x22: ffff80000801745c x21: 0000aaaac95ac068 | x20: 00000000f2000004 x19: ffff800009cf0040 x18: 0000000000000000 | x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 | x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 | x11: 0000000000000010 x10: ffff800008c87190 x9 : ffff800008ca00d0 | x8 : 000000000000003c x7 : 0000000000000000 x6 : 0000000000000000 | x5 : 0000000000000000 x4 : 0000000000000000 x3 : 00000000000043a4 | x2 : 00000000f2000004 x1 : 00000000f2000004 x0 : ffff800009cf0040 | Kernel panic - not syncing: kernel stack overflow | CPU: 0 PID: 145 Comm: sh Not tainted 6.0.0 #2 | Hardware name: linux,dummy-virt (DT) | Call trace: | dump_backtrace+0xe4/0x104 | show_stack+0x18/0x4c | dump_stack_lvl+0x64/0x7c | dump_stack+0x18/0x38 | panic+0x14c/0x338 | test_taint+0x0/0x2c | panic_bad_stack+0x104/0x118 | handle_bad_stack+0x34/0x48 | __bad_stack+0x78/0x7c | arm64_enter_el1_dbg+0x4/0x20 | el1h_64_sync_handler+0x40/0x98 | el1h_64_sync+0x64/0x68 | cortex_a76_erratum_1463225_debug_handler+0x0/0x34 ... | el1h_64_sync_handler+0x40/0x98 | el1h_64_sync+0x64/0x68 | cortex_a76_erratum_1463225_debug_handler+0x0/0x34 ... | el1h_64_sync_handler+0x40/0x98 | el1h_64_sync+0x64/0x68 | cortex_a76_erratum_1463225_debug_handler+0x0/0x34 | el1h_64_sync_handler+0x40/0x98 | el1h_64_sync+0x64/0x68 | do_el0_svc+0x0/0x28 | el0t_64_sync_handler+0x84/0xf0 | el0t_64_sync+0x18c/0x190 | Kernel Offset: disabled | CPU features: 0x0080,00005021,19001080 | Memory Limit: none | ---[ end Kernel panic - not syncing: kernel stack overflow ]--- With this patch, cortex_a76_erratum_1463225_debug_handler() is inlined into el1_dbg(), and el1_dbg() cannot be probed: | # echo p cortex_a76_erratum_1463225_debug_handler > /sys/kernel/debug/tracing/kprobe_events | sh: write error: No such file or directory | # grep -w cortex_a76_errat ---truncated---
CVE-2022-49889 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ring-buffer: Check for NULL cpu_buffer in ring_buffer_wake_waiters() On some machines the number of listed CPUs may be bigger than the actual CPUs that exist. The tracing subsystem allocates a per_cpu directory with access to the per CPU ring buffer via a cpuX file. But to save space, the ring buffer will only allocate buffers for online CPUs, even though the CPU array will be as big as the nr_cpu_ids. With the addition of waking waiters on the ring buffer when closing the file, the ring_buffer_wake_waiters() now needs to make sure that the buffer is allocated (with the irq_work allocated with it) before trying to wake waiters, as it will cause a NULL pointer dereference. While debugging this, I added a NULL check for the buffer itself (which is OK to do), and also NULL pointer checks against buffer->buffers (which is not fine, and will WARN) as well as making sure the CPU number passed in is within the nr_cpu_ids (which is also not fine if it isn't). Bugzilla: https://bugzilla.opensuse.org/show_bug.cgi?id=1204705
CVE-2022-49890 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: capabilities: fix potential memleak on error path from vfs_getxattr_alloc() In cap_inode_getsecurity(), we will use vfs_getxattr_alloc() to complete the memory allocation of tmpbuf, if we have completed the memory allocation of tmpbuf, but failed to call handler->get(...), there will be a memleak in below logic: |-- ret = (int)vfs_getxattr_alloc(mnt_userns, ...) | /* ^^^ alloc for tmpbuf */ |-- value = krealloc(*xattr_value, error + 1, flags) | /* ^^^ alloc memory */ |-- error = handler->get(handler, ...) | /* error! */ |-- *xattr_value = value | /* xattr_value is &tmpbuf (memory leak!) */ So we will try to free(tmpbuf) after vfs_getxattr_alloc() fails to fix it. [PM: subject line and backtrace tweaks]
CVE-2022-49891 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: kprobe: Fix memory leak in test_gen_kprobe/kretprobe_cmd() test_gen_kprobe_cmd() only free buf in fail path, hence buf will leak when there is no failure. Move kfree(buf) from fail path to common path to prevent the memleak. The same reason and solution in test_gen_kretprobe_cmd(). unreferenced object 0xffff888143b14000 (size 2048): comm "insmod", pid 52490, jiffies 4301890980 (age 40.553s) hex dump (first 32 bytes): 70 3a 6b 70 72 6f 62 65 73 2f 67 65 6e 5f 6b 70 p:kprobes/gen_kp 72 6f 62 65 5f 74 65 73 74 20 64 6f 5f 73 79 73 robe_test do_sys backtrace: [<000000006d7b836b>] kmalloc_trace+0x27/0xa0 [<0000000009528b5b>] 0xffffffffa059006f [<000000008408b580>] do_one_initcall+0x87/0x2a0 [<00000000c4980a7e>] do_init_module+0xdf/0x320 [<00000000d775aad0>] load_module+0x3006/0x3390 [<00000000e9a74b80>] __do_sys_finit_module+0x113/0x1b0 [<000000003726480d>] do_syscall_64+0x35/0x80 [<000000003441e93b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2022-49892 1 Linux 1 Linux Kernel 2025-05-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix use-after-free for dynamic ftrace_ops KASAN reported a use-after-free with ftrace ops [1]. It was found from vmcore that perf had registered two ops with the same content successively, both dynamic. After unregistering the second ops, a use-after-free occurred. In ftrace_shutdown(), when the second ops is unregistered, the FTRACE_UPDATE_CALLS command is not set because there is another enabled ops with the same content. Also, both ops are dynamic and the ftrace callback function is ftrace_ops_list_func, so the FTRACE_UPDATE_TRACE_FUNC command will not be set. Eventually the value of 'command' will be 0 and ftrace_shutdown() will skip the rcu synchronization. However, ftrace may be activated. When the ops is released, another CPU may be accessing the ops. Add the missing synchronization to fix this problem. [1] BUG: KASAN: use-after-free in __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline] BUG: KASAN: use-after-free in ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049 Read of size 8 at addr ffff56551965bbc8 by task syz-executor.2/14468 CPU: 1 PID: 14468 Comm: syz-executor.2 Not tainted 5.10.0 #7 Hardware name: linux,dummy-virt (DT) Call trace: dump_backtrace+0x0/0x40c arch/arm64/kernel/stacktrace.c:132 show_stack+0x30/0x40 arch/arm64/kernel/stacktrace.c:196 __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b4/0x248 lib/dump_stack.c:118 print_address_description.constprop.0+0x28/0x48c mm/kasan/report.c:387 __kasan_report mm/kasan/report.c:547 [inline] kasan_report+0x118/0x210 mm/kasan/report.c:564 check_memory_region_inline mm/kasan/generic.c:187 [inline] __asan_load8+0x98/0xc0 mm/kasan/generic.c:253 __ftrace_ops_list_func kernel/trace/ftrace.c:7020 [inline] ftrace_ops_list_func+0x2b0/0x31c kernel/trace/ftrace.c:7049 ftrace_graph_call+0x0/0x4 __might_sleep+0x8/0x100 include/linux/perf_event.h:1170 __might_fault mm/memory.c:5183 [inline] __might_fault+0x58/0x70 mm/memory.c:5171 do_strncpy_from_user lib/strncpy_from_user.c:41 [inline] strncpy_from_user+0x1f4/0x4b0 lib/strncpy_from_user.c:139 getname_flags+0xb0/0x31c fs/namei.c:149 getname+0x2c/0x40 fs/namei.c:209 [...] Allocated by task 14445: kasan_save_stack+0x24/0x50 mm/kasan/common.c:48 kasan_set_track mm/kasan/common.c:56 [inline] __kasan_kmalloc mm/kasan/common.c:479 [inline] __kasan_kmalloc.constprop.0+0x110/0x13c mm/kasan/common.c:449 kasan_kmalloc+0xc/0x14 mm/kasan/common.c:493 kmem_cache_alloc_trace+0x440/0x924 mm/slub.c:2950 kmalloc include/linux/slab.h:563 [inline] kzalloc include/linux/slab.h:675 [inline] perf_event_alloc.part.0+0xb4/0x1350 kernel/events/core.c:11230 perf_event_alloc kernel/events/core.c:11733 [inline] __do_sys_perf_event_open kernel/events/core.c:11831 [inline] __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723 __arm64_sys_perf_event_open+0x6c/0x80 kernel/events/core.c:11723 [...] Freed by task 14445: kasan_save_stack+0x24/0x50 mm/kasan/common.c:48 kasan_set_track+0x24/0x34 mm/kasan/common.c:56 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:358 __kasan_slab_free.part.0+0x11c/0x1b0 mm/kasan/common.c:437 __kasan_slab_free mm/kasan/common.c:445 [inline] kasan_slab_free+0x2c/0x40 mm/kasan/common.c:446 slab_free_hook mm/slub.c:1569 [inline] slab_free_freelist_hook mm/slub.c:1608 [inline] slab_free mm/slub.c:3179 [inline] kfree+0x12c/0xc10 mm/slub.c:4176 perf_event_alloc.part.0+0xa0c/0x1350 kernel/events/core.c:11434 perf_event_alloc kernel/events/core.c:11733 [inline] __do_sys_perf_event_open kernel/events/core.c:11831 [inline] __se_sys_perf_event_open+0x550/0x15f4 kernel/events/core.c:11723 [...]
CVE-2022-49894 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix region HPA ordering validation Some regions may not have any address space allocated. Skip them when validating HPA order otherwise a crash like the following may result: devm_cxl_add_region: cxl_acpi cxl_acpi.0: decoder3.4: created region9 BUG: kernel NULL pointer dereference, address: 0000000000000000 [..] RIP: 0010:store_targetN+0x655/0x1740 [cxl_core] [..] Call Trace: <TASK> kernfs_fop_write_iter+0x144/0x200 vfs_write+0x24a/0x4d0 ksys_write+0x69/0xf0 do_syscall_64+0x3a/0x90 store_targetN+0x655/0x1740: alloc_region_ref at drivers/cxl/core/region.c:676 (inlined by) cxl_port_attach_region at drivers/cxl/core/region.c:850 (inlined by) cxl_region_attach at drivers/cxl/core/region.c:1290 (inlined by) attach_target at drivers/cxl/core/region.c:1410 (inlined by) store_targetN at drivers/cxl/core/region.c:1453
CVE-2022-49895 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/region: Fix decoder allocation crash When an intermediate port's decoders have been exhausted by existing regions, and creating a new region with the port in question in it's hierarchical path is attempted, cxl_port_attach_region() fails to find a port decoder (as would be expected), and drops into the failure / cleanup path. However, during cleanup of the region reference, a sanity check attempts to dereference the decoder, which in the above case didn't exist. This causes a NULL pointer dereference BUG. To fix this, refactor the decoder allocation and de-allocation into helper routines, and in this 'free' routine, check that the decoder, @cxld, is valid before attempting any operations on it.
CVE-2022-49896 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cxl/pmem: Fix cxl_pmem_region and cxl_memdev leak When a cxl_nvdimm object goes through a ->remove() event (device physically removed, nvdimm-bridge disabled, or nvdimm device disabled), then any associated regions must also be disabled. As highlighted by the cxl-create-region.sh test [1], a single device may host multiple regions, but the driver was only tracking one region at a time. This leads to a situation where only the last enabled region per nvdimm device is cleaned up properly. Other regions are leaked, and this also causes cxl_memdev reference leaks. Fix the tracking by allowing cxl_nvdimm objects to track multiple region associations.
CVE-2022-49899 1 Linux 1 Linux Kernel 2025-05-07 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fscrypt: stop using keyrings subsystem for fscrypt_master_key The approach of fs/crypto/ internally managing the fscrypt_master_key structs as the payloads of "struct key" objects contained in a "struct key" keyring has outlived its usefulness. The original idea was to simplify the code by reusing code from the keyrings subsystem. However, several issues have arisen that can't easily be resolved: - When a master key struct is destroyed, blk_crypto_evict_key() must be called on any per-mode keys embedded in it. (This started being the case when inline encryption support was added.) Yet, the keyrings subsystem can arbitrarily delay the destruction of keys, even past the time the filesystem was unmounted. Therefore, currently there is no easy way to call blk_crypto_evict_key() when a master key is destroyed. Currently, this is worked around by holding an extra reference to the filesystem's request_queue(s). But it was overlooked that the request_queue reference is *not* guaranteed to pin the corresponding blk_crypto_profile too; for device-mapper devices that support inline crypto, it doesn't. This can cause a use-after-free. - When the last inode that was using an incompletely-removed master key is evicted, the master key removal is completed by removing the key struct from the keyring. Currently this is done via key_invalidate(). Yet, key_invalidate() takes the key semaphore. This can deadlock when called from the shrinker, since in fscrypt_ioctl_add_key(), memory is allocated with GFP_KERNEL under the same semaphore. - More generally, the fact that the keyrings subsystem can arbitrarily delay the destruction of keys (via garbage collection delay, or via random processes getting temporary key references) is undesirable, as it means we can't strictly guarantee that all secrets are ever wiped. - Doing the master key lookups via the keyrings subsystem results in the key_permission LSM hook being called. fscrypt doesn't want this, as all access control for encrypted files is designed to happen via the files themselves, like any other files. The workaround which SELinux users are using is to change their SELinux policy to grant key search access to all domains. This works, but it is an odd extra step that shouldn't really have to be done. The fix for all these issues is to change the implementation to what I should have done originally: don't use the keyrings subsystem to keep track of the filesystem's fscrypt_master_key structs. Instead, just store them in a regular kernel data structure, and rework the reference counting, locking, and lifetime accordingly. Retain support for RCU-mode key lookups by using a hash table. Replace fscrypt_sb_free() with fscrypt_sb_delete(), which releases the keys synchronously and runs a bit earlier during unmount, so that block devices are still available. A side effect of this patch is that neither the master keys themselves nor the filesystem keyrings will be listed in /proc/keys anymore. ("Master key users" and the master key users keyrings will still be listed.) However, this was mostly an implementation detail, and it was intended just for debugging purposes. I don't know of anyone using it. This patch does *not* change how "master key users" (->mk_users) works; that still uses the keyrings subsystem. That is still needed for key quotas, and changing that isn't necessary to solve the issues listed above. If we decide to change that too, it would be a separate patch. I've marked this as fixing the original commit that added the fscrypt keyring, but as noted above the most important issue that this patch fixes wasn't introduced until the addition of inline encryption support.
CVE-2025-21176 4 Apple, Linux, Microsoft and 1 more 22 Macos, Linux Kernel, .net and 19 more 2025-05-06 8.8 High
.NET, .NET Framework, and Visual Studio Remote Code Execution Vulnerability
CVE-2025-21173 3 Linux, Microsoft, Redhat 5 Linux Kernel, .net, Visual Studio 2022 and 2 more 2025-05-06 7.3 High
.NET Elevation of Privilege Vulnerability
CVE-2024-38229 4 Apple, Linux, Microsoft and 1 more 6 Macos, Linux Kernel, .net and 3 more 2025-05-06 8.1 High
.NET and Visual Studio Remote Code Execution Vulnerability
CVE-2025-21172 4 Apple, Linux, Microsoft and 1 more 9 Macos, Linux Kernel, .net and 6 more 2025-05-06 7.5 High
.NET and Visual Studio Remote Code Execution Vulnerability
CVE-2022-33981 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-05 3.3 Low
drivers/block/floppy.c in the Linux kernel before 5.17.6 is vulnerable to a denial of service, because of a concurrency use-after-free flaw after deallocating raw_cmd in the raw_cmd_ioctl function.
CVE-2022-28388 5 Debian, Fedoraproject, Linux and 2 more 22 Debian Linux, Fedora, Linux Kernel and 19 more 2025-05-05 5.5 Medium
usb_8dev_start_xmit in drivers/net/can/usb/usb_8dev.c in the Linux kernel through 5.17.1 has a double free.
CVE-2022-28356 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-05-05 5.5 Medium
In the Linux kernel before 5.17.1, a refcount leak bug was found in net/llc/af_llc.c.
CVE-2023-38427 2 Linux, Netapp 5 Linux Kernel, H300s, H410s and 2 more 2025-05-05 9.8 Critical
An issue was discovered in the Linux kernel before 6.3.8. fs/smb/server/smb2pdu.c in ksmbd has an integer underflow and out-of-bounds read in deassemble_neg_contexts.
CVE-2023-37453 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-05 4.6 Medium
An issue was discovered in the USB subsystem in the Linux kernel through 6.4.2. There is an out-of-bounds and crash in read_descriptors in drivers/usb/core/sysfs.c.
CVE-2023-35824 3 Debian, Linux, Redhat 5 Debian Linux, Linux Kernel, Enterprise Linux and 2 more 2025-05-05 7 High
An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in dm1105_remove in drivers/media/pci/dm1105/dm1105.c.
CVE-2023-35823 3 Debian, Linux, Redhat 5 Debian Linux, Linux Kernel, Enterprise Linux and 2 more 2025-05-05 7 High
An issue was discovered in the Linux kernel before 6.3.2. A use-after-free was found in saa7134_finidev in drivers/media/pci/saa7134/saa7134-core.c.