Filtered by CWE-125
Total 8027 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-35087 1 Swftools 1 Swftools 2025-05-28 5.5 Medium
SWFTools commit 772e55a2 was discovered to contain a segmentation violation via MovieAddFrame at /src/gif2swf.c.
CVE-2022-2881 1 Isc 1 Bind 2025-05-28 5.5 Medium
The underlying bug might cause read past end of the buffer and either read memory it should not read, or crash the process.
CVE-2020-36602 1 Huawei 16 576up005 Hota-cm-h-shark-bd, 576up005 Hota-cm-h-shark-bd Firmware, 577hota-cm-h-shark-bd and 13 more 2025-05-28 6.1 Medium
There is an out-of-bounds read and write vulnerability in some headset products. An unauthenticated attacker gets the device physically and crafts malformed message with specific parameter and sends the message to the affected products. Due to insufficient validation of message, which may be exploited to cause out-of-bounds read and write.
CVE-2025-3160 1 Assimp 1 Assimp 2025-05-28 3.3 Low
A vulnerability has been found in Open Asset Import Library Assimp 5.4.3 and classified as problematic. This vulnerability affects the function Assimp::SceneCombiner::AddNodeHashes of the file code/Common/SceneCombiner.cpp of the component File Handler. The manipulation leads to out-of-bounds read. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The patch is identified as a0993658f40d8e13ff5823990c30b43c82a5daf0. It is recommended to apply a patch to fix this issue.
CVE-2025-4919 2 Mozilla, Redhat 8 Firefox, Thunderbird, Enterprise Linux and 5 more 2025-05-28 8.8 High
An attacker was able to perform an out-of-bounds read or write on a JavaScript object by confusing array index sizes. This vulnerability affects Firefox < 138.0.4, Firefox ESR < 128.10.1, Firefox ESR < 115.23.1, Thunderbird < 128.10.2, and Thunderbird < 138.0.2.
CVE-2025-4918 2 Mozilla, Redhat 8 Firefox, Thunderbird, Enterprise Linux and 5 more 2025-05-28 7.5 High
An attacker was able to perform an out-of-bounds read or write on a JavaScript `Promise` object. This vulnerability affects Firefox < 138.0.4, Firefox ESR < 128.10.1, Firefox ESR < 115.23.1, Thunderbird < 128.10.2, and Thunderbird < 138.0.2.
CVE-2023-32206 2 Mozilla, Redhat 8 Firefox, Firefox Esr, Thunderbird and 5 more 2025-05-27 6.5 Medium
An out-of-bound read could have led to a crash in the RLBox Expat driver. This vulnerability affects Firefox < 113, Firefox ESR < 102.11, and Thunderbird < 102.11.
CVE-2023-52070 1 Jfree 1 Jfreechart 2025-05-27 8.4 High
JFreeChart v1.5.4 was discovered to be vulnerable to ArrayIndexOutOfBounds via the 'setSeriesNeedle(int index, int type)' method. NOTE: this is disputed by multiple third parties who believe there was not reasonable evidence to determine the existence of a vulnerability. The submission may have been based on a tool that is not sufficiently robust for vulnerability identification.
CVE-2024-22949 1 Jfree 1 Jfreechart 2025-05-27 9.1 Critical
JFreeChart v1.5.4 was discovered to contain a NullPointerException via the component /chart/annotations/CategoryLineAnnotation. NOTE: this is disputed by multiple third parties who believe there was not reasonable evidence to determine the existence of a vulnerability. The submission may have been based on a tool that is not sufficiently robust for vulnerability identification.
CVE-2025-31196 1 Apple 2 Ipados, Macos 2025-05-27 5.5 Medium
An out-of-bounds read was addressed with improved input validation. This issue is fixed in iPadOS 17.7.7, macOS Ventura 13.7.6, macOS Sonoma 14.7.6. Processing a maliciously crafted file may lead to a denial-of-service or potentially disclose memory contents.
CVE-2025-31204 2 Apple, Redhat 12 Ipados, Iphone Os, Macos and 9 more 2025-05-27 8.8 High
The issue was addressed with improved memory handling. This issue is fixed in watchOS 11.5, tvOS 18.5, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, Safari 18.5. Processing maliciously crafted web content may lead to memory corruption.
CVE-2025-31209 1 Apple 6 Ipados, Iphone Os, Macos and 3 more 2025-05-27 6.3 Medium
An out-of-bounds read was addressed with improved bounds checking. This issue is fixed in watchOS 11.5, macOS Sonoma 14.7.6, tvOS 18.5, iPadOS 17.7.7, iOS 18.5 and iPadOS 18.5, macOS Sequoia 15.5, visionOS 2.5, macOS Ventura 13.7.6. Parsing a file may lead to disclosure of user information.
CVE-2024-34049 1 Onosproject 1 Traffic Steering Xapplication 2025-05-27 7.5 High
Open Networking Foundation SD-RAN Rimedo rimedo-ts 0.1.1 has a slice bounds out-of-range panic in "return plmnIdString[0:3], plmnIdString[3:]" in reader.go.
CVE-2025-40014 1 Linux 1 Linux Kernel 2025-05-26 7.8 High
In the Linux kernel, the following vulnerability has been resolved: objtool, spi: amd: Fix out-of-bounds stack access in amd_set_spi_freq() If speed_hz < AMD_SPI_MIN_HZ, amd_set_spi_freq() iterates over the entire amd_spi_freq array without breaking out early, causing 'i' to go beyond the array bounds. Fix that by stopping the loop when it gets to the last entry, so the low speed_hz value gets clamped up to AMD_SPI_MIN_HZ. Fixes the following warning with an UBSAN kernel: drivers/spi/spi-amd.o: error: objtool: amd_set_spi_freq() falls through to next function amd_spi_set_opcode()
CVE-2025-39778 1 Linux 1 Linux Kernel 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show() The csts_state_names[] array only has six sparse entries, but the iteration code in nvmet_ctrl_state_show() iterates seven, resulting in a potential out-of-bounds stack read. Fix that. Fixes the following warning with an UBSAN kernel: vmlinux.o: warning: objtool: .text.nvmet_ctrl_state_show: unexpected end of section
CVE-2025-39735 1 Linux 1 Linux Kernel 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix slab-out-of-bounds read in ea_get() During the "size_check" label in ea_get(), the code checks if the extended attribute list (xattr) size matches ea_size. If not, it logs "ea_get: invalid extended attribute" and calls print_hex_dump(). Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds INT_MAX (2,147,483,647). Then ea_size is clamped: int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr)); Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper limit is treated as an int, causing an overflow above 2^31 - 1. This leads "size" to wrap around and become negative (-184549328). The "size" is then passed to print_hex_dump() (called "len" in print_hex_dump()), it is passed as type size_t (an unsigned type), this is then stored inside a variable called "int remaining", which is then assigned to "int linelen" which is then passed to hex_dump_to_buffer(). In print_hex_dump() the for loop, iterates through 0 to len-1, where len is 18446744073525002176, calling hex_dump_to_buffer() on each iteration: for (i = 0; i < len; i += rowsize) { linelen = min(remaining, rowsize); remaining -= rowsize; hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize, linebuf, sizeof(linebuf), ascii); ... } The expected stopping condition (i < len) is effectively broken since len is corrupted and very large. This eventually leads to the "ptr+i" being passed to hex_dump_to_buffer() to get closer to the end of the actual bounds of "ptr", eventually an out of bounds access is done in hex_dump_to_buffer() in the following for loop: for (j = 0; j < len; j++) { if (linebuflen < lx + 2) goto overflow2; ch = ptr[j]; ... } To fix this we should validate "EALIST_SIZE(ea_buf->xattr)" before it is utilised.
CVE-2025-37975 2025-05-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: riscv: module: Fix out-of-bounds relocation access The current code allows rel[j] to access one element past the end of the relocation section. Simplify to num_relocations which is equivalent to the existing size expression.
CVE-2025-37825 2025-05-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix out-of-bounds access in nvmet_enable_port When trying to enable a port that has no transport configured yet, nvmet_enable_port() uses NVMF_TRTYPE_MAX (255) to query the transports array, causing an out-of-bounds access: [ 106.058694] BUG: KASAN: global-out-of-bounds in nvmet_enable_port+0x42/0x1da [ 106.058719] Read of size 8 at addr ffffffff89dafa58 by task ln/632 [...] [ 106.076026] nvmet: transport type 255 not supported Since commit 200adac75888, NVMF_TRTYPE_MAX is the default state as configured by nvmet_ports_make(). Avoid this by checking for NVMF_TRTYPE_MAX before proceeding.
CVE-2025-37785 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-05-26 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix OOB read when checking dotdot dir Mounting a corrupted filesystem with directory which contains '.' dir entry with rec_len == block size results in out-of-bounds read (later on, when the corrupted directory is removed). ext4_empty_dir() assumes every ext4 directory contains at least '.' and '..' as directory entries in the first data block. It first loads the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry() and then uses its rec_len member to compute the location of '..' dir entry (in ext4_next_entry). It assumes the '..' dir entry fits into the same data block. If the rec_len of '.' is precisely one block (4KB), it slips through the sanity checks (it is considered the last directory entry in the data block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the memory slot allocated to the data block. The following call to ext4_check_dir_entry() on new value of de then dereferences this pointer which results in out-of-bounds mem access. Fix this by extending __ext4_check_dir_entry() to check for '.' dir entries that reach the end of data block. Make sure to ignore the phony dir entries for checksum (by checking name_len for non-zero). Note: This is reported by KASAN as use-after-free in case another structure was recently freed from the slot past the bound, but it is really an OOB read. This issue was found by syzkaller tool. Call Trace: [ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710 [ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375 [ 38.595158] [ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1 [ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 38.595304] Call Trace: [ 38.595308] <TASK> [ 38.595311] dump_stack_lvl+0xa7/0xd0 [ 38.595325] print_address_description.constprop.0+0x2c/0x3f0 [ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595349] print_report+0xaa/0x250 [ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595368] ? kasan_addr_to_slab+0x9/0x90 [ 38.595378] kasan_report+0xab/0xe0 [ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710 [ 38.595400] __ext4_check_dir_entry+0x67e/0x710 [ 38.595410] ext4_empty_dir+0x465/0x990 [ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10 [ 38.595432] ext4_rmdir.part.0+0x29a/0xd10 [ 38.595441] ? __dquot_initialize+0x2a7/0xbf0 [ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10 [ 38.595464] ? __pfx___dquot_initialize+0x10/0x10 [ 38.595478] ? down_write+0xdb/0x140 [ 38.595487] ? __pfx_down_write+0x10/0x10 [ 38.595497] ext4_rmdir+0xee/0x140 [ 38.595506] vfs_rmdir+0x209/0x670 [ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190 [ 38.595529] do_rmdir+0x363/0x3c0 [ 38.595537] ? __pfx_do_rmdir+0x10/0x10 [ 38.595544] ? strncpy_from_user+0x1ff/0x2e0 [ 38.595561] __x64_sys_unlinkat+0xf0/0x130 [ 38.595570] do_syscall_64+0x5b/0x180 [ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e
CVE-2025-37761 2025-05-26 6.0 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Fix an out-of-bounds shift when invalidating TLB When the size of the range invalidated is larger than rounddown_pow_of_two(ULONG_MAX), The function macro roundup_pow_of_two(length) will hit an out-of-bounds shift [1]. Use a full TLB invalidation for such cases. v2: - Use a define for the range size limit over which we use a full TLB invalidation. (Lucas) - Use a better calculation of the limit. [1]: [ 39.202421] ------------[ cut here ]------------ [ 39.202657] UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13 [ 39.202673] shift exponent 64 is too large for 64-bit type 'long unsigned int' [ 39.202688] CPU: 8 UID: 0 PID: 3129 Comm: xe_exec_system_ Tainted: G U 6.14.0+ #10 [ 39.202690] Tainted: [U]=USER [ 39.202690] Hardware name: ASUS System Product Name/PRIME B560M-A AC, BIOS 2001 02/01/2023 [ 39.202691] Call Trace: [ 39.202692] <TASK> [ 39.202695] dump_stack_lvl+0x6e/0xa0 [ 39.202699] ubsan_epilogue+0x5/0x30 [ 39.202701] __ubsan_handle_shift_out_of_bounds.cold+0x61/0xe6 [ 39.202705] xe_gt_tlb_invalidation_range.cold+0x1d/0x3a [xe] [ 39.202800] ? find_held_lock+0x2b/0x80 [ 39.202803] ? mark_held_locks+0x40/0x70 [ 39.202806] xe_svm_invalidate+0x459/0x700 [xe] [ 39.202897] drm_gpusvm_notifier_invalidate+0x4d/0x70 [drm_gpusvm] [ 39.202900] __mmu_notifier_release+0x1f5/0x270 [ 39.202905] exit_mmap+0x40e/0x450 [ 39.202912] __mmput+0x45/0x110 [ 39.202914] exit_mm+0xc5/0x130 [ 39.202916] do_exit+0x21c/0x500 [ 39.202918] ? lockdep_hardirqs_on_prepare+0xdb/0x190 [ 39.202920] do_group_exit+0x36/0xa0 [ 39.202922] get_signal+0x8f8/0x900 [ 39.202926] arch_do_signal_or_restart+0x35/0x100 [ 39.202930] syscall_exit_to_user_mode+0x1fc/0x290 [ 39.202932] do_syscall_64+0xa1/0x180 [ 39.202934] ? do_user_addr_fault+0x59f/0x8a0 [ 39.202937] ? lock_release+0xd2/0x2a0 [ 39.202939] ? do_user_addr_fault+0x5a9/0x8a0 [ 39.202942] ? trace_hardirqs_off+0x4b/0xc0 [ 39.202944] ? clear_bhb_loop+0x25/0x80 [ 39.202946] ? clear_bhb_loop+0x25/0x80 [ 39.202947] ? clear_bhb_loop+0x25/0x80 [ 39.202950] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 39.202952] RIP: 0033:0x7fa945e543e1 [ 39.202961] Code: Unable to access opcode bytes at 0x7fa945e543b7. [ 39.202962] RSP: 002b:00007ffca8fb4170 EFLAGS: 00000293 [ 39.202963] RAX: 000000000000003d RBX: 0000000000000000 RCX: 00007fa945e543e3 [ 39.202964] RDX: 0000000000000000 RSI: 00007ffca8fb41ac RDI: 00000000ffffffff [ 39.202964] RBP: 00007ffca8fb4190 R08: 0000000000000000 R09: 00007fa945f600a0 [ 39.202965] R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 [ 39.202966] R13: 00007fa9460dd310 R14: 00007ffca8fb41ac R15: 0000000000000000 [ 39.202970] </TASK> [ 39.202970] ---[ end trace ]--- (cherry picked from commit b88f48f86500bc0b44b4f73ac66d500a40d320ad)